Study on the characteristics and properties of composites based on PLA/TiO2 and thermoplastic starch
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/17622Keywords:
Poly(lactic acid), thermoplastic starch, titanium dioxideAbstract
The purpose of this study is to fabricate composites based on poly(lactic acid) (PLA), thermoplastic starch (TPS) and TiO2 nanoparticles (n-TiO2), and to investigate the effects of TiO2 on the interface compatibility of TPS and PLA. The FTIR spectra confirmed that the interfacial interaction between the components is the formation of hydrogen bonding between TiO2 and PLA/TPS matrix (Ti-O-C bond). The results indicated that the tensile properties of PLA/TPS blends were strongly influenced by the PLA/TPS ratio which decreased with increasing TPS content. Besides, the tensile strength of the composites was improved in the presence of n-TiO2 particles due to the high crystallinity of the PLA/TPS/n-TiO2 composites (with an n-TiO2 content of 1 wt.%) in comparison with the PLA/TPS blends as shown in DSC and XRD analysis. The TGA results also indicated that the thermal stability of the PLA/TPS/n-TiO2 composites was improved with the addition of TiO2 nanoparticles. Finally, SEM images indicated that TiO2 nanoparticles were well dispersed in the PLA/TPS matrix at low TiO2 content. At high TiO2 content (2 wt.%) it caused agglomeration into clusters which reduced the properties of the composites.
Downloads
References
1. Farah S., Anderson D. G., Langer R. - Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review, Adv. Drug Delivery Rev. 107 (2016) 367-392. DOI: https://doi.org/10.1016/j.addr.2016.06.012
2. Murariu M., Dubois P. - PLA composites: From production to properties, Adv. Drug Delivery Rev. 107 (2016) 17-46. DOI: https://doi.org/10.1016/j.addr.2016.04.003
3. Saini P., Arora M., Kumar M. N. V. R. - Poly(lactic acid) blends in biomedical applications, Adv. Drug Delivery Rev. 107 (2016) 47-59. DOI: https://doi.org/10.1016/j.addr.2016.06.014
4. Raquez J. M., Habibi Y., Murariu M., Dubois P. - Polylactide (PLA)-based nanocomposites, Prog. Polym. Sci. 38 (2013) 1504-1542. DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.014
5. Auras R., Harte B., Selke S. - An overview of polylactides as packaging materials, Macromol. Biosci. 4(9) (2004) 835-864. DOI: https://doi.org/10.1002/mabi.200400043
6. Auras R. A., Lim L. T., Selke S. E., Tsuji H. - Poly(lactic acid): Synthesis, structures, properties, processing, and applications, John Wiley & Sons Inc., New York, 2011. DOI: https://doi.org/10.1002/9780470649848
7. Garlotta D. - A literature review of poly(lactic acid), J.Polym. Environ. 9 (2) (2002) 63-84.
8. Jamshidian M., Tehrany E. A., Imran M., Jacquot M., Desobry S. - Poly-lactic acid: Production, applications, nanocomposites, and release studies, Compr. Rev. Food Sci. F. 9 (5) (2010) 552-571. DOI: https://doi.org/10.1111/j.1541-4337.2010.00126.x
9. Tang X., Alavi S., Herald T. J. - Effects of plasticizers on the structure and properties of starch–clay nanocomposite films, Carbohyd. Polym. 74 (3) (2008) 552-558. DOI: https://doi.org/10.1016/j.carbpol.2008.04.022
10. Teixeira E. M., Da Roz A. L., Carvalho A. J. F., Curvelo A. A. S. - The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch, Carbohyd. Polym. 69 (4) (2007) 619-624. DOI: https://doi.org/10.1016/j.carbpol.2007.01.022
11. Ma X. F., Yu J. G., and Wan J. J. - Urea and ethanolamine as a mixed plasticizer for thermoplastic starch, Carbohyd. Polym. 64 (2) (2006) 267-273. DOI: https://doi.org/10.1016/j.carbpol.2005.11.042
12. Shi R., Zhang Z. Z., Liu Q. Y., Han Y. M., Zhang L. Q., Chen D. F., Tian W. - Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending, Carbohyd. Polym. 69 (4) (2007) 748-755. DOI: https://doi.org/10.1016/j.carbpol.2007.02.010
13. Buzarovska A., Grozdanov A. - Biodegradable poly(L-lactic acid)/TiO2 nanocomposites: Thermal properties and degradation, J. Appl. Polym. Sci. 123 (4) (2012) 2187-2193. DOI: https://doi.org/10.1002/app.34729
14. Toniatton T. V., Rodrigues B. V. M., Marsi T. C. O., Ricci R., Marciano F. R., Webster T. J., Lobo A. O. - Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: Insights into bactericidal activity and cell viability, Mater. Sci. Eng. C Mater. Biol. Appl. 71 (2017) 381-385. DOI: https://doi.org/10.1016/j.msec.2016.10.026
15. Pattamaphon C., Torpong K., Rotruedee C., Kowwit S. - Photocatalytic Oxidation of PLA/ TiO2 Composite Films for Indoor Air Purification, ASC Omega 6 (16) (2021) 10629-10636. DOI: https://doi.org/10.1021/acsomega.0c06194
16. Yanbing L., Yuzhen C., Gang G. - Effects of TiO2 nanoparticles on the photodegradation of poly(lactic acid), J. Appl. Polym. Sci. 135 (3) (2018) 46509, doi.org/10.1002/ app.46509.
17. Pengkai W., ZhouYi X., Hanguo X., Jie C. -Synergistic effects of modified TiO2/multifunctionalized graphene oxide nanosheets as functional hybrid nanofiller in enhancing the interface compatibility of PLA/starch nanocomposites, J. Appl. Polym. Sci. 137 (37) (2020) 49094-49111. DOI: https://doi.org/10.1002/app.49094
18. Gonçalves C., Pinto A., Machado A.V., Moreira J., Gonçalves I.C., Magalhães F. - Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets, Polym. Compos. 39 (S1) (2016) E308-E320. DOI: https://doi.org/10.1002/pc.24050
19. Buasri A., Chaiyut N., Kristsanakun C., Phatkun C., Khunsri T. - Preparation and properties of nanocomposites based ond poly(lactic acid) and modified TiO2, Adv. Mater. Res. 463–464 (2016) 519-522. DOI: https://doi.org/10.4028/www.scientific.net/AMR.463-464.519
20. Luo Y. B., Wang X. L., Xu D. Y., Wang Y. Z. - Preparation and characterization of poly(lactic acid)-grafted TiO2nanoparticles with improved dispersions, Appl. Surf. Sci. 255 (15) (2009) 6795-6801. DOI: https://doi.org/10.1016/j.apsusc.2009.02.074
21. Enrica S., Antonella G., Francesca F., Vincenza A., Silvia C., Andrea L., Aurora R., Eleonora F., Carola E. C. - Biodegradable Carbon-based Ashes/Maize Starch Composite Films for Agricultural Applications, Polymers 12 (3) (2020) 524. doi.org/10.3390/ polym12030524. DOI: https://doi.org/10.3390/polym12030524
22. Vitor B. C., Adriana D. C., Jose M. M., Luiz H. C. M. - Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures, J. Therm. Anal. Calorim. 115 (2014) 153-160. DOI: https://doi.org/10.1007/s10973-013-3259-0
23. Kumar P. M., Badrinarayanan S., Sastry M. - Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states, Thin Solid Films 358 (1-2) (2000) 122-130. DOI: https://doi.org/10.1016/S0040-6090(99)00722-1
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.