Study on impact strength and effect of accelerated weather testing on some properties of polyoxymethylene/silica nanocomposites

Authors

  • Tran Thi Mai Institute for Tropical Technology, Vietnam Academy of Scienc and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Thu Trang Institute for Tropical Technology, Vietnam Academy of Scienc and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thuy Chinh Institute for Tropical Technology, Vietnam Academy of Scienc and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Dang Thi Thanh Le International Training Institute for Materials Science, Hanoi University of Science and Technology, No. 1, Dai Co Viet Str., Hai Ba Trung dist., Ha Noi, Viet Nam
  • Ha Van Hang Institute of Science and Technology,The Ministry of Public Security, 47 Pham Van Dong, Cau Giay, Ha Noi, Viet Nam
  • Thai Hoang Institute for Tropical Technology, Vietnam Academy of Scienc and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/14821

Keywords:

Polyoxymethylene, nanosilica, carbonyl index, dielectric properties, morphology

Abstract

The impact strength, some properties and morphology of nanocomposites based on polyoxymethylene (POM) and nanosilica (NS) with different content before and after accelerated weather testing are discussed in this paper. The impact strength of all POM/NS nanocomposite samples are larger than that of POM. Carbonyl index (CI) for nanocomposites are changed after testing responding to the increase of C=O groups content. The results of tensile properties indicate that samples are decomposed by ultraviolet (UV) radiation and photo-oxidation degradation of POM.

Downloads

Download data is not yet available.

Author Biography

Tran Thi Mai, Institute for Tropical Technology, Vietnam Academy of Scienc and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

Phòng Hóa lý Vật liệu phi kim loại

References

Mohamad Z. A., Yakubu D., Puteri S. M. M. Y., Effect of Environmental Degradation on Mechanical Properties of Kenaf/Polyethylene Terephthalate Fiber Reinforced Polyoxymethylene Hybrid Composite, Advances in Materials Science and Engineering, 2013, DOI: 10.1155/2013/671481 DOI: https://doi.org/10.1155/2013/671481

Thomas L., Steven M. C., Robert H. F., Colin F., Accelerated weathering of natural fiber-filled polyethylene composites, Journal of Materials in Civil Engineering., 16 (6) (2004) 547– 555. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(547)

Wypych G., Handbook of material weathering (2nd edition): Chapter 9, Chapter 11, ChemTec Publishing, Toronto, Canada, 1995, 155-163, 181-201.

Krasowska K., Joanna B., Maria R., Helena J., Meyyarappallil S. S., Koichi G., Sabu T., Environmental degradation of ramie fibre reinforced biocomposites, Polish J. of Environmental Studies, 19 (5) (2010) 937–945.

Archodoulaki V. M, Lu¨ftl S., Seidler S., Degradation Behavior of Polyoxymethylene: Influence of Different Stabilizer Packages, Journal of Applied Polymer Science, 105 (6) (2007) 3679–3688. DOI: https://doi.org/10.1002/app.26524

Sigrid L., Visakh P. M., Sarath C., Polyoxymethylene Handbook: structure, properties, applications and their nanonanocomposites, Wiley-Scrivener (2014).

Wietaw Dziadur, The effect of some elastomers on the structure and mechanical properties of polyoxymethylene, Materials Characterization., 46 (2-3) (2001) 131–135. DOI: https://doi.org/10.1016/S1044-5803(01)00114-0

Wang F., Wu J. K., Xia H. S., Wang Q., Polyoxymethylene/carbon nanotubes nanocomposites prepared by solid state mechanochemical approach, Plastics, Rubber and Nanocomposites, 36 (7-8) (2007) 297–303.

Kaustav G., Sarah B., Hans-Joachim L., Stephen E. R., Barbara L. K., Pore size engineering in fluorinated surfactant templated mesoporous silica powders through supercritical carbon dioxide processing, Microporous and Mesoporous Materials, 113 (1-3) (2008) 106-113. DOI: https://doi.org/10.1016/j.micromeso.2007.11.017

Liu P., Wang Q., Li X., Zhang C., Investigation of the states of water and OH groups on the surface of silica, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 334 (1-3) (2009) 112-115. DOI: https://doi.org/10.1016/j.colsurfa.2008.10.028

Hua Z., Shishan W., Jian S., Polymer/Silica nanonanocomposites: preparation, characterization, properties, and applications, Chem. Rev., 108 (9) (2008) 3893-3957. DOI: https://doi.org/10.1021/cr068035q

Katz H. S., Milewski J. V., Handbook of Fillers for Plastics. Chapter 9. Synthertic silica, Van Nostrand Reinhold Company, New York, USA, 1987, 167-188.

Wang F., Wu J. K., Xia H. S., Wang Q., Polyoxymethylene/carbon nanotubes composites prepared by solid state mechanochemical approach, Plastics Rubber and Composites, 36 (7/8) (2007) 297–303. DOI: https://doi.org/10.1179/174328907X237511

Kinga P., Polyoxymethylene-homopolymer/hydroxyapatite nanocomposites for biomedical applications, Journal of Applied Polymer Science, 123 (2012) 2234–2243. DOI: https://doi.org/10.1002/app.34752

Sirirat W., Paramaporn S., Unchana S., Supakanok T., Mechanical and thermal properties of polyoxymethylene nanocomposites filled with different nanofillers, Polymer Plastics Technology and Engineering, 53 (2) (2014) 181–188. DOI: https://doi.org/10.1080/03602559.2013.843707

Sirirat W., Supakanok T., Akaraphol P., Chaturong E., Effect of particle sizes of zinc oxide on mechanical, thermal and morphological properties of polyoxymethylene/zinc oxide nanocomposites, Polymer Testing, 27 (8) (2008) 971–976. DOI: https://doi.org/10.1016/j.polymertesting.2008.08.012

Afshin Z. Z., Karim S. N., The Effects of Interphase and Interface Characteristics on the Tensile Behaviour of POM/CaCO3 Nanocomposites, Nanomaterials and Nanotechnology, 4 (17) (2014) 1-10. DOI: https://doi.org/10.5772/58696

Xiaowen Z., Lin Y., Study on the thermal conductive polyoxymethylene/graphite composites, Journal of Applied Polymer Science, 111 (2) (2009) 759 – 767.

Mai T. T., Chinh N. T., Baskaran R., Trang N. T. T., Thang V. V., Le D. T. T., Minh D. Q., Hoang T., Tensile, thermal. Dielectric and morphological properties of Polyoxymethylene/silica nanocomposites, Journal of NanoScience and Nanotechnology, 18 (17) (2018) 4963-4970. DOI: https://doi.org/10.1166/jnn.2018.15352

Wypych G., Handbook of material weathering (2nd edition): Chapter 11, ChemTec Publishing, Toronto, Canada, 181-201.

Narciso V. R., Miguel S. S., Silvia I., Antonio G., Thermal Degradation of Polyoxymethylene Evaluated with FTIR and Spectrophotometry, Polymer Plastics Technology and Engineering, 48 (4) (2009) 470–477. DOI: https://doi.org/10.1080/03602550902725472

Sigrid L., Visakh P. M., Sarath C., Polyoxymethylene Handbook: structure, properties, applications and their nanonanocomposites (1 edition), chapter 15, Wiley-Scrivener, 2014, 412-413.

Zhongyang L., Jing J., Shuangjun C., Jun Z., Effect of crystal form and particle size of titanium dioxide on the photodegradation behaviour of ethylene-vinyl acetate copolymer/low density polyethylene composite, Polymer Degradation and Stability, 96 (1) (2011) 43-50. DOI: https://doi.org/10.1016/j.polymdegradstab.2010.11.010

Gardette J. L., Sabel H. D., Lemaire J., Photooxidation of polyacetal copolymer I, Angewandte Makromolekulare Chemie, 188 (3157) (1991) 113-128. DOI: https://doi.org/10.1002/apmc.1991.051880111

El-Kareh B., Hutter L. N., Fundamentals of Semiconductor Processing Technologies. Kluwer Academic Publishers, 1995. DOI: https://doi.org/10.1007/978-1-4615-2209-6

Mailadilt T. S., Dielectric Materials for wireless communication (1 Edition), chapter 2, Elsevier Science, 2008.

Ajayan P. M., Schadler L. S., Braun P. V., Nanocomposite science and technology, Chapter 2. Polymer-based and polymer-filled nanocomposites, Wiley-VCH Verlag, Weinheim, Germany, 2003, 77-144. DOI: https://doi.org/10.1002/3527602127.ch2

Roy M., Nelson J. K., MacCrone R. K., Schadler L. S., Reed C. W., Keefe R., Polymer nanocomposite dielectrics-the role of the interface, IEEE Dielectrics and Electrical Insulation Society, 12 (4) (2005) 629-643. DOI: https://doi.org/10.1109/TDEI.2005.1511089

Minh L. D., Chinh N. T., Trang N. T. T., Giang N. V., Trung T. H., Huynh M. D., Mai T. T., Giang L. D., Hoang T., Study on change of some characters and morphology of polyethylene compound exposed naturally in Dong Hoi – Quang Binh, Vietnam Journal of Chemistry, 54 (2) (2016) 153-159.

Downloads

Published

2020-12-15

How to Cite

[1]
T. T. Mai, N. T. T. Trang, N. T. Chinh, D. T. T. Le, H. V. Hang, and T. Hoang, “Study on impact strength and effect of accelerated weather testing on some properties of polyoxymethylene/silica nanocomposites”, Vietnam J. Sci. Technol., vol. 58, no. 6, pp. 685–698, Dec. 2020.

Issue

Section

Materials