Molecular docking tutorial using AutoDock 4.2.6 on SARS-CoV-2 main protease for beginner

Pham Minh Quan, Le Thi Thuy Huong, Pham Thi Hong Minh, Tran Quoc Toan, Do Tien Lam, Vu Thi Thu Le, Pham Quoc Long
Author affiliations

Authors

  • Pham Minh Quan Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0001-6922-1627
  • Le Thi Thuy Huong Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Pham Thi Hong Minh Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Tran Quoc Toan Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Do Tien Lam Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Vu Thi Thu Le Thai Nguyen University of Agriculture and Forestry, Quyet Thang, Thai Nguyen City, Viet Nam
  • Pham Quoc Long Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16459

Abstract

The worldwide pandemic caused by coronavirus SARS-CoV-2 (so called as COVID-19 disease) has affected 219 countries and territories, leading to numerous deaths and global financial crisis. The main protease (Mpro) of SARS-CoV-2 plays an important role in mediating the transcription and replication of virus, thus, one of the main therapeutic is to find compounds that are capable of inhibiting these enzymes as soon as possible. Nowadays, computer-aided drug design plays an important role in the field of drug discovery. In particular, molecular docking is one of the initial steps that effectively screen numerous number of compounds for their interaction and binding affinity toward targeted enzyme, therefrom, suggesting a short list of potential inhibitors for further drug development processes. As part of our ongoing program to provide simple guideline for scientific community to utilize different docking tools for research purposes. In this article, a complete manual guideline of Autodock 4.2.6 is presented to demonstrate the simulation of interaction between PF-07321332 compound and the main protease of SARS-CoV-2, thus, suggest an effective tool for scientists to conduct reseach on this disease.

Downloads

Download data is not yet available.

References

https://www.worldometers.info/coronavirus/.

Zhou P., Yang X.L., Wang X. G., Hu B., Zhang L., Zhang W., Si H. R., Zhu Y., Li B., Huang C. L., Chen H. D., Chen J., Luo Y., Guo H., Jiang R. D., Liu M. Q., Chen Y., Shen X. R., Wang X., Zheng X. S., Zhao K., Chen Q. J., Deng F., Liu L. L., Yan B., Zhan F. X., Wang Y. Y., Xiao G. F., and Shi Z. L. - A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (7798) (2020) 270-273. https://doi.org/ 10.1038/s41586-020-2012-7. DOI: https://doi.org/10.1038/s41586-020-2012-7

Schoeman D. and Fielding B. C. - Coronavirus envelope protein: current knowledge, Virol J. 16 (1) (2019). https://doi.org/10.1186/s12985-019-1182-0. DOI: https://doi.org/10.1186/s12985-019-1182-0

Fauquet C. M. and Fargette D. - International Committee on Taxonomy of Viruses and the 3,142 unassigned species, Virol J. 2 (1) (2005). https://doi.org/10.1186/1743-422x-2-64. DOI: https://doi.org/10.1186/1743-422X-2-64

Yu W. and MacKerell A. D. - Computer-Aided Drug Design Methods, In: Antibiotics, Chapter Chapter 5, 2017, pp. 85-106. DOI: https://doi.org/10.1007/978-1-4939-6634-9_5

Marshall G. R. - Computer-Aided Drug Design, Annu. Rev. Pharmacol Toxicol 27 (1) (1987) 193-213. https://doi.org/10.1146/annurev.pa.27.040187.001205. DOI: https://doi.org/10.1146/annurev.pa.27.040187.001205

Pham M. Q., Tran T. H. V., Pham Q. L., and Gairin J. E. - In silico analysis of the binding properties of solasonine to mortalin and p53, and in vitro pharmacological studies of its apoptotic and cytotoxic effects on human HepG2 and Hep3b hepatocellular carcinoma cells, Fundam. Clin. Pharmacol 33 (4) (2019) 385-396. https://doi.org/10.1111/fcp.12447. DOI: https://doi.org/10.1111/fcp.12447

Tao X., Huang Y., Wang C., Chen F., Yang L., Ling L., Che Z. and Chen X. - Recent developments in molecular docking technology applied in food science: a review, Int. J. Food Sci. Technol 55 (1) (2019) 33-45. https://doi.org/10.1111/ijfs.14325. DOI: https://doi.org/10.1111/ijfs.14325

Lavecchia A. and Giovanni C. - Virtual Screening Strategies in Drug Discovery: A Critical Review, Curr. Med. Chem. 20 (23) (2013) 2839-2860. https://doi.org/10.2174/ 09298673113209990001. DOI: https://doi.org/10.2174/09298673113209990001

Lill M. Virtual Screening in Drug Design, In: In Silico Models for Drug Discovery, Chapter Chapter 1, 2013, pp. 1-12. DOI: https://doi.org/10.1007/978-1-62703-342-8_1

Maia E. H. B., Assis L. C., de Oliveira T. A., da Silva A. M. and Taranto A. G. - Structure-Based Virtual Screening: From Classical to Artificial Intelligence, Frontiers in Chemistry 8 (2020). https://doi.org/10.3389/fchem.2020.00343. DOI: https://doi.org/10.3389/fchem.2020.00343

Kontoyianni M. Docking and Virtual Screening in Drug Discovery, In: Proteomics for Drug Discovery, Chapter Chapter 18, 2017, pp. 255-266. DOI: https://doi.org/10.1007/978-1-4939-7201-2_18

Dan N. T., Quang H. D., Van Truong V., Huu Nghi D., Cuong N. M., Cuong T. D., Toan T. Q., Bach L. G., Anh N. H. T., Mai N. T., Lan N. T., Van Chinh L., and Quan P. M. - Design, synthesis, structure, in vitro cytotoxic activity evaluation and docking studies on target enzyme GSK-3β of new indirubin-3ʹ-oxime derivatives, Sci. Rep. 10 (1) (2020). https://doi.org/10.1038/s41598-020-68134-8. DOI: https://doi.org/10.1038/s41598-020-68134-8

Ngo S. T., Tam N. M., Pham M. Q. and Nguyen T. H. - Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro, J. Chem. Inf. Model 61 (5) (2021) 2302-2312. https://doi.org/10.1021/acs.jcim.1c00159. DOI: https://doi.org/10.1021/acs.jcim.1c00159

Nguyen N. T., Nguyen T. H., Pham T. N. H., Huy N. T., Bay M. V., Pham M. Q., Nam P. C., Vu V. V., and Ngo S. T. - Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity, J. Chem. Inf. Model. 60 (1) (2019) 204-211. https://doi.org/10.1021/acs.jcim.9b00778. DOI: https://doi.org/10.1021/acs.jcim.9b00778

Mario S. V. T., Mario E. V. T., Pedro A. V., and Ernesto M. - AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4, Biol. Direct. 15 (12) (2020) 1-12. https://doi.org/10.1186/s13062-020-00267-2. DOI: https://doi.org/10.1186/s13062-020-00267-2

Syed M. D. R., Shazi S. and Mohd H. - A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians, EXCLI J. 12 (2013) 831-857. https://doi.org/10.17877/DE290R-11534.

Jonsson C. B., Golden J. E. and Meibohm B. - Time to ‘Mind the Gap’ in novel small molecule drug discovery for direct-acting antivirals for SARS-CoV-2, Curr. Opin. Virol. 50 (2021) 1-7. https://doi.org/10.1016/j.coviro.2021.06.008. DOI: https://doi.org/10.1016/j.coviro.2021.06.008

Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., Duan Y., Yu J., Wang L., Yang K., Liu F., Jiang R., Yang X., You T., Liu X., Yang X., Bai F., Liu H., Liu X., Guddat L. W., Xu W., Xiao G., Qin C., Shi Z., Jiang H., Rao Z., and Yang H. - Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature 582 (7811) (2020) 289-293. https://doi.org/10.1038/s41586-020-2223-y. DOI: https://doi.org/10.1038/s41586-020-2223-y

Downloads

Published

30-12-2022

How to Cite

[1]
P. M. Quan, “Molecular docking tutorial using AutoDock 4.2.6 on SARS-CoV-2 main protease for beginner”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 929–947, Dec. 2022.

Issue

Section

Review

Most read articles by the same author(s)

1 2 > >>