Molecular docking tutorial using AutoDock 4.2.6 on SARS-CoV-2 main protease for beginner
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16459Abstract
The worldwide pandemic caused by coronavirus SARS-CoV-2 (so called as COVID-19 disease) has affected 219 countries and territories, leading to numerous deaths and global financial crisis. The main protease (Mpro) of SARS-CoV-2 plays an important role in mediating the transcription and replication of virus, thus, one of the main therapeutic is to find compounds that are capable of inhibiting these enzymes as soon as possible. Nowadays, computer-aided drug design plays an important role in the field of drug discovery. In particular, molecular docking is one of the initial steps that effectively screen numerous number of compounds for their interaction and binding affinity toward targeted enzyme, therefrom, suggesting a short list of potential inhibitors for further drug development processes. As part of our ongoing program to provide simple guideline for scientific community to utilize different docking tools for research purposes. In this article, a complete manual guideline of Autodock 4.2.6 is presented to demonstrate the simulation of interaction between PF-07321332 compound and the main protease of SARS-CoV-2, thus, suggest an effective tool for scientists to conduct reseach on this disease.
Downloads
References
https://www.worldometers.info/coronavirus/.
Zhou P., Yang X.L., Wang X. G., Hu B., Zhang L., Zhang W., Si H. R., Zhu Y., Li B., Huang C. L., Chen H. D., Chen J., Luo Y., Guo H., Jiang R. D., Liu M. Q., Chen Y., Shen X. R., Wang X., Zheng X. S., Zhao K., Chen Q. J., Deng F., Liu L. L., Yan B., Zhan F. X., Wang Y. Y., Xiao G. F., and Shi Z. L. - A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (7798) (2020) 270-273. https://doi.org/ 10.1038/s41586-020-2012-7. DOI: https://doi.org/10.1038/s41586-020-2012-7
Schoeman D. and Fielding B. C. - Coronavirus envelope protein: current knowledge, Virol J. 16 (1) (2019). https://doi.org/10.1186/s12985-019-1182-0. DOI: https://doi.org/10.1186/s12985-019-1182-0
Fauquet C. M. and Fargette D. - International Committee on Taxonomy of Viruses and the 3,142 unassigned species, Virol J. 2 (1) (2005). https://doi.org/10.1186/1743-422x-2-64. DOI: https://doi.org/10.1186/1743-422X-2-64
Yu W. and MacKerell A. D. - Computer-Aided Drug Design Methods, In: Antibiotics, Chapter Chapter 5, 2017, pp. 85-106. DOI: https://doi.org/10.1007/978-1-4939-6634-9_5
Marshall G. R. - Computer-Aided Drug Design, Annu. Rev. Pharmacol Toxicol 27 (1) (1987) 193-213. https://doi.org/10.1146/annurev.pa.27.040187.001205. DOI: https://doi.org/10.1146/annurev.pa.27.040187.001205
Pham M. Q., Tran T. H. V., Pham Q. L., and Gairin J. E. - In silico analysis of the binding properties of solasonine to mortalin and p53, and in vitro pharmacological studies of its apoptotic and cytotoxic effects on human HepG2 and Hep3b hepatocellular carcinoma cells, Fundam. Clin. Pharmacol 33 (4) (2019) 385-396. https://doi.org/10.1111/fcp.12447. DOI: https://doi.org/10.1111/fcp.12447
Tao X., Huang Y., Wang C., Chen F., Yang L., Ling L., Che Z. and Chen X. - Recent developments in molecular docking technology applied in food science: a review, Int. J. Food Sci. Technol 55 (1) (2019) 33-45. https://doi.org/10.1111/ijfs.14325. DOI: https://doi.org/10.1111/ijfs.14325
Lavecchia A. and Giovanni C. - Virtual Screening Strategies in Drug Discovery: A Critical Review, Curr. Med. Chem. 20 (23) (2013) 2839-2860. https://doi.org/10.2174/ 09298673113209990001. DOI: https://doi.org/10.2174/09298673113209990001
Lill M. Virtual Screening in Drug Design, In: In Silico Models for Drug Discovery, Chapter Chapter 1, 2013, pp. 1-12. DOI: https://doi.org/10.1007/978-1-62703-342-8_1
Maia E. H. B., Assis L. C., de Oliveira T. A., da Silva A. M. and Taranto A. G. - Structure-Based Virtual Screening: From Classical to Artificial Intelligence, Frontiers in Chemistry 8 (2020). https://doi.org/10.3389/fchem.2020.00343. DOI: https://doi.org/10.3389/fchem.2020.00343
Kontoyianni M. Docking and Virtual Screening in Drug Discovery, In: Proteomics for Drug Discovery, Chapter Chapter 18, 2017, pp. 255-266. DOI: https://doi.org/10.1007/978-1-4939-7201-2_18
Dan N. T., Quang H. D., Van Truong V., Huu Nghi D., Cuong N. M., Cuong T. D., Toan T. Q., Bach L. G., Anh N. H. T., Mai N. T., Lan N. T., Van Chinh L., and Quan P. M. - Design, synthesis, structure, in vitro cytotoxic activity evaluation and docking studies on target enzyme GSK-3β of new indirubin-3ʹ-oxime derivatives, Sci. Rep. 10 (1) (2020). https://doi.org/10.1038/s41598-020-68134-8. DOI: https://doi.org/10.1038/s41598-020-68134-8
Ngo S. T., Tam N. M., Pham M. Q. and Nguyen T. H. - Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro, J. Chem. Inf. Model 61 (5) (2021) 2302-2312. https://doi.org/10.1021/acs.jcim.1c00159. DOI: https://doi.org/10.1021/acs.jcim.1c00159
Nguyen N. T., Nguyen T. H., Pham T. N. H., Huy N. T., Bay M. V., Pham M. Q., Nam P. C., Vu V. V., and Ngo S. T. - Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity, J. Chem. Inf. Model. 60 (1) (2019) 204-211. https://doi.org/10.1021/acs.jcim.9b00778. DOI: https://doi.org/10.1021/acs.jcim.9b00778
Mario S. V. T., Mario E. V. T., Pedro A. V., and Ernesto M. - AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4, Biol. Direct. 15 (12) (2020) 1-12. https://doi.org/10.1186/s13062-020-00267-2. DOI: https://doi.org/10.1186/s13062-020-00267-2
Syed M. D. R., Shazi S. and Mohd H. - A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians, EXCLI J. 12 (2013) 831-857. https://doi.org/10.17877/DE290R-11534.
Jonsson C. B., Golden J. E. and Meibohm B. - Time to ‘Mind the Gap’ in novel small molecule drug discovery for direct-acting antivirals for SARS-CoV-2, Curr. Opin. Virol. 50 (2021) 1-7. https://doi.org/10.1016/j.coviro.2021.06.008. DOI: https://doi.org/10.1016/j.coviro.2021.06.008
Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., Duan Y., Yu J., Wang L., Yang K., Liu F., Jiang R., Yang X., You T., Liu X., Yang X., Bai F., Liu H., Liu X., Guddat L. W., Xu W., Xiao G., Qin C., Shi Z., Jiang H., Rao Z., and Yang H. - Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature 582 (7811) (2020) 289-293. https://doi.org/10.1038/s41586-020-2223-y. DOI: https://doi.org/10.1038/s41586-020-2223-y
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.