RESEARCH ON THE ADSORPTION OF PB2+ IONS BY APATITE ORE AND PURIFIED APATITE ORE

Authors

  • Nguyen Thu Phuong Institute for Tropical Technology https://orcid.org/0000-0002-6066-5712
  • Cao Thi Hong Institute for Tropical Technology, Vietnam Academy of Science and Technology
  • Nguyen Thi Thuy Vietnam Institute of Industrial Chemistry
  • Nguyen Thi Xuyen Institute for Tropical Technology, Vietnam Academy of Science and Technology
  • Nguyen Thi Thom Institute for Tropical Technology, Vietnam Academy of Science and Technology
  • Pham Thi Nam Institute for Tropical Technology, Vietnam Academy of Science and Technology
  • Nguyen Thi Thu Trang Institute for Tropical Technology, Vietnam Academy of Science and Technology
  • Do Thi Hai Hanoi University of Mining and Geology
  • Dinh Thi Mai Thanh Institute for Tropical Technology, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.15625/2525-2518/59/6/16185

Keywords:

Apatite ore, purified apatite ore, adsorption, Pb2 ions

Abstract

Apatite ore from Lao Cai province (Vietnam) has large reserves and low cost which was purified by a simple chemical method. Apatite ore and purified one were characterized the molecular structure, phase component, specific surface area, element component, and morphology by IR, XRD, BET, EDX, and SEM methods. The IR result shows both materials have functional groups of fluorapatite such as PO43- and F-. XDR and EDX confirm that the main component of the ore is fluorapatite. After purification, the particles are smaller and more uniform with a higher specific surface area (36.62 m2/g compared with 3.76 m2/g of original apatite ore). Two materials were used to adsorb Pb2+ ions in an aqueous solution. The effect of adsorbent mass, pH, Pb2+ initial concentration, and contact time on adsorption efficiency and capacity was evaluated. The study of adsorption kinetics and isothermal adsorption showed that the Pb2+ adsorption process on apatite ore is matched with the pseudo-second-order kinetic model and the Langmuir model. The comparison between the original apatite ore and purified one was also studied. With 0.05 g of absorbent, after 15 minutes, the efficiency of purified ore is 97.47%, much higher compared with the original ore (50%) after 45 minutes.

Downloads

Download data is not yet available.

References

Hong P. T., Anh D. T. N., Nha D. T., Hai D. H and Huong H. T. T. - Metal bioaccumulation in fishes and macro zooplankton in some lakes in Hanoi, Vietnam J. Sci. Technol. 56 (2C) (2018) 96-103. https://doi.org/10.15625/2525-2518/56/2C/13035.

Hong P. T., Ha L. T. T., Hien N. T. T., Chung N. T., Hung N. Q., Cuong N. C. and Huong H. T. T. - Combination impact of pH and temperature on the toxicity of lead on zooplankton in the context of global warming, Vietnam J. Sci. Technol. 58 (5A) (2020) 105-114. https://doi.org/10.15625/2525-2518/58/5A/15214.

Rupa C., Anupama A., Ajaya K. S., Bhawana J. and Abu B. H. S. - Adsorption of heavy metal ions by various low-cost adsorbents: a review, Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1722811.

Anh N. D. - Study on synthesis of MnFe2O4/GNPs composite and application on heavy metal removal, Vietnam J. Sci. Technol. 56 (1A) (2019) 204-211. https://doi.org/10.15625/2525-2518/56/1A/12524.

Shraddha P., Srinivas M K., Raja S. and Arivalagan P. - A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater, J. Water Process Eng. 38 (2020) 101574. https://doi.org/10.1016/j.jwpe.2020.101574.

Phuong V. T., Nam P. T., Phuong N. T., Hai D. T. and Thanh D. T. M. - Defluoridation behavior of nano Zn-hydroxyapatite synthesized by chemical precipitation method, Vietnam J. Chem. 50 (6B) (2012) 239-244.

Duyen L. T., Thao L. T. P., Hai D. T., Hanh V. T., Nam P. T., Thom N. T., Hong C. T., Phuong N. T., Thanh D. T. M., Hai L. V. et al. - Fabrication of porous hydroxyapatite granules as an effective adsorbent for the removal of aqueous Pb(II) ions, J. Chem. 2019 (2019) 8620181. https://doi.org/10.1155/2019/8620181.

Phuong N. T., Xuyen N. T., Trang N. V., Thom N. T., Thai V. Q., Huy N. T., Nam P. T., Thanh D. T. M. - Treatment of Cd2+ and Cu2+ ions using modified apatite ore, J. Chem. 2020 (2020) 652197. https://doi.org/10.1155/2020/6527197.

Thom N. T., Thanh D. T. M., Nam P. T., Phuong N. T. and Claudine B-H. - Adsorption behavior of Cd2+ ions using hydroxyapatite (HAp) powder, Green Process. Synth. 7 (5) (2018) 409-416. https://doi.org/10.1515/gps-2018-0031.

Bostick W.D., Jarabek R.J. and Conca J.L. - Phosphate-Induced Metal Stabilization: Use of Apatite and Bone Char for the Removal of Soluble Radionuclides in Authentic and Simulated DOE Groundwater, Proceedings of the Air and Waste 92nd Annual Meeting and Exhibition, St. Louis, MO, USA, 1999.

Bostick W. D. - Use of apatite for chemical stabilization of subsurface contaminants, Final Report of Contract: DE-AC26-01NT41306 of U.S. Department of Energy, National Energy Technology Laboratory, New York, NY, USA, 2003.

Martinez R. J., Beazley M. J. and Sobecky P. A. - Phosphate-mediated remediation of metals and radionuclides, Advances in Ecology, 2014 (2014) 786929. https://doi.org/10.1155/2014/786929.

Conca J. L., Lu N., Parker G., Moore B. and Adams A. - PIMS – remediation of metal contaminated waters and soils, Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May (2000) with an Addendum from ICAM, Montery, CA, USA, 2000.

Thomson B. M., Smith C. L., Busch R. D., Siegel M. D. and Baldwin C. - Removal of metals and radionuclides using apatite and other natural sorbents, J. Environ. Eng. 129 (6) (2003) 492-499. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(492).

Basta N. T. and McGowen S. L. - Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil, Environ. Pollut. 127 (1) (2004) 73-82. https://doi.org/10.1016/S0269-7491(03)00250-1.

James C. - Phosphate – Induced Metal Stabilization, Report of Contract: 68D60023 of United States Environmental Protection Agency, 1997.

Wang J., Chao Y., Wan Q., Zhu Z. and Yu H. - Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition, Acta Biomater. 5 (5) (2009) 1798–1807. https://doi.org/10.1016/j.actbio.2009.01.005.

Nikcˇevíc´ I., Jokanovic´ V., Mitric´ M., Nedic’ Z., Makovec D. and Uskokovic D. - Mechanochemical synthesis of nanostructured fluorapatite/ fluorhydroxyapatite and carbonated fluorapatite/ fluorhydroxyapatite, J. Solid State Chem. 177 (2004) 2565–2574. https://doi.org/10.1016/j.jssc.2004.03.024.

Hang D. T. T. and Chi D. K. - Removal of heavy metal from industrial water by apatite mineral, Vietnam J. Sci. Technol. 72A (2009) 83-87.

Van M. D., Huu T. V., Hoa T. M. D., Duy H. N., Huan-Ping C., Lan H. N. and Chu-Ching L. - Evaluation of fly ash, apatite and rice straw derived-biochar in varying combinations for in situ remediation of soil contaminated with multiple heavy metals, Soil Sci. Plant Nutr., 66 (2) (2020) 379-388. https://doi.org/10.1080/00380768.2020.1725913.

Viet N. T. M., Hoa N. T. - Study on adsorption capacity of methylene blue and phenol red on Lao Cai apatite ore, J. Anal. Sci. 22 (2) (2017) 124-131.

Viet N. T. M., Yen L. T. H. – Investigation of adsorption capacity of Mn(II), Ni(II) on Lao Cai apatite ore modified by acid, Vietnam J. Chem. 54 (5e1,2) (2016) 97-101.

Downloads

Published

2021-12-29

How to Cite

Phuong, N. T., Cao, T. H., Nguyen, T. T., Nguyen, T. X., Nguyen, T. T., Pham, T. N., Nguyen, T. T. T., Do, T. H., & Dinh, T. M. T. (2021). RESEARCH ON THE ADSORPTION OF PB2+ IONS BY APATITE ORE AND PURIFIED APATITE ORE. Vietnam Journal of Science and Technology, 59(6). https://doi.org/10.15625/2525-2518/59/6/16185

Issue

Section

Environment