Research on the adsorption of Pb2+ by apatite ore and purified apatite ore
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/59/6/16185Keywords:
Apatite ore, purified apatite ore, adsorption, Pb2 ionsAbstract
Apatite ore from Lao Cai province (Vietnam) has large reserves and low cost which was purified by a simple chemical method. Apatite ore and purified one were characterized the molecular structure, phase component, specific surface area, element component, and morphology by IR, XRD, BET, EDX, and SEM methods. The IR result shows both materials have functional groups of fluorapatite such as PO43- and F-. XDR and EDX confirm that the main component of the ore is fluorapatite. After purification, the particles are smaller and more uniform with a higher specific surface area (36.62 m2/g compared with 3.76 m2/g of original apatite ore). Two materials were used to adsorb Pb2+ ions in an aqueous solution. The effect of adsorbent mass, pH, Pb2+ initial concentration, and contact time on adsorption efficiency and capacity was evaluated. The study of adsorption kinetics and isothermal adsorption showed that the Pb2+ adsorption process on apatite ore is matched with the pseudo-second-order kinetic model and the Langmuir model. The comparison between the original apatite ore and purified one was also studied. With 0.05 g of absorbent, after 15 minutes, the efficiency of purified ore is 97.47%, much higher compared with the original ore (50%) after 45 minutes.
Downloads
References
Hong P. T., Anh D. T. N., Nha D. T., Hai D. H and Huong H. T. T. - Metal bioaccumulation in fishes and macro zooplankton in some lakes in Hanoi, Vietnam J. Sci. Technol. 56 (2C) (2018) 96-103. https://doi.org/10.15625/2525-2518/56/2C/13035. DOI: https://doi.org/10.15625/2525-2518/56/2C/13035
Hong P. T., Ha L. T. T., Hien N. T. T., Chung N. T., Hung N. Q., Cuong N. C. and Huong H. T. T. - Combination impact of pH and temperature on the toxicity of lead on zooplankton in the context of global warming, Vietnam J. Sci. Technol. 58 (5A) (2020) 105-114. https://doi.org/10.15625/2525-2518/58/5A/15214. DOI: https://doi.org/10.15625/2525-2518/58/5A/15214
Rupa C., Anupama A., Ajaya K. S., Bhawana J. and Abu B. H. S. - Adsorption of heavy metal ions by various low-cost adsorbents: a review, Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1722811. DOI: https://doi.org/10.1080/03067319.2020.1722811
Anh N. D. - Study on synthesis of MnFe2O4/GNPs composite and application on heavy metal removal, Vietnam J. Sci. Technol. 56 (1A) (2019) 204-211. https://doi.org/10.15625/2525-2518/56/1A/12524. DOI: https://doi.org/10.15625/2525-2518/56/1A/12524
Shraddha P., Srinivas M K., Raja S. and Arivalagan P. - A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater, J. Water Process Eng. 38 (2020) 101574. https://doi.org/10.1016/j.jwpe.2020.101574. DOI: https://doi.org/10.1016/j.jwpe.2020.101574
Phuong V. T., Nam P. T., Phuong N. T., Hai D. T. and Thanh D. T. M. - Defluoridation behavior of nano Zn-hydroxyapatite synthesized by chemical precipitation method, Vietnam J. Chem. 50 (6B) (2012) 239-244.
Duyen L. T., Thao L. T. P., Hai D. T., Hanh V. T., Nam P. T., Thom N. T., Hong C. T., Phuong N. T., Thanh D. T. M., Hai L. V. et al. - Fabrication of porous hydroxyapatite granules as an effective adsorbent for the removal of aqueous Pb(II) ions, J. Chem. 2019 (2019) 8620181. https://doi.org/10.1155/2019/8620181. DOI: https://doi.org/10.1155/2019/8620181
Phuong N. T., Xuyen N. T., Trang N. V., Thom N. T., Thai V. Q., Huy N. T., Nam P. T., Thanh D. T. M. - Treatment of Cd2+ and Cu2+ ions using modified apatite ore, J. Chem. 2020 (2020) 652197. https://doi.org/10.1155/2020/6527197. DOI: https://doi.org/10.1155/2020/6527197
Thom N. T., Thanh D. T. M., Nam P. T., Phuong N. T. and Claudine B-H. - Adsorption behavior of Cd2+ ions using hydroxyapatite (HAp) powder, Green Process. Synth. 7 (5) (2018) 409-416. https://doi.org/10.1515/gps-2018-0031. DOI: https://doi.org/10.1515/gps-2018-0031
Bostick W.D., Jarabek R.J. and Conca J.L. - Phosphate-Induced Metal Stabilization: Use of Apatite and Bone Char for the Removal of Soluble Radionuclides in Authentic and Simulated DOE Groundwater, Proceedings of the Air and Waste 92nd Annual Meeting and Exhibition, St. Louis, MO, USA, 1999.
Bostick W. D. - Use of apatite for chemical stabilization of subsurface contaminants, Final Report of Contract: DE-AC26-01NT41306 of U.S. Department of Energy, National Energy Technology Laboratory, New York, NY, USA, 2003.
Martinez R. J., Beazley M. J. and Sobecky P. A. - Phosphate-mediated remediation of metals and radionuclides, Advances in Ecology, 2014 (2014) 786929. https://doi.org/10.1155/2014/786929. DOI: https://doi.org/10.1155/2014/786929
Conca J. L., Lu N., Parker G., Moore B. and Adams A. - PIMS – remediation of metal contaminated waters and soils, Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May (2000) with an Addendum from ICAM, Montery, CA, USA, 2000.
Thomson B. M., Smith C. L., Busch R. D., Siegel M. D. and Baldwin C. - Removal of metals and radionuclides using apatite and other natural sorbents, J. Environ. Eng. 129 (6) (2003) 492-499. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(492). DOI: https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(492)
Basta N. T. and McGowen S. L. - Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil, Environ. Pollut. 127 (1) (2004) 73-82. https://doi.org/10.1016/S0269-7491(03)00250-1. DOI: https://doi.org/10.1016/S0269-7491(03)00250-1
James C. - Phosphate – Induced Metal Stabilization, Report of Contract: 68D60023 of United States Environmental Protection Agency, 1997.
Wang J., Chao Y., Wan Q., Zhu Z. and Yu H. - Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition, Acta Biomater. 5 (5) (2009) 1798–1807. https://doi.org/10.1016/j.actbio.2009.01.005. DOI: https://doi.org/10.1016/j.actbio.2009.01.005
Nikcˇevíc´ I., Jokanovic´ V., Mitric´ M., Nedic’ Z., Makovec D. and Uskokovic D. - Mechanochemical synthesis of nanostructured fluorapatite/ fluorhydroxyapatite and carbonated fluorapatite/ fluorhydroxyapatite, J. Solid State Chem. 177 (2004) 2565–2574. https://doi.org/10.1016/j.jssc.2004.03.024. DOI: https://doi.org/10.1016/j.jssc.2004.03.024
Hang D. T. T. and Chi D. K. - Removal of heavy metal from industrial water by apatite mineral, Vietnam J. Sci. Technol. 72A (2009) 83-87.
Van M. D., Huu T. V., Hoa T. M. D., Duy H. N., Huan-Ping C., Lan H. N. and Chu-Ching L. - Evaluation of fly ash, apatite and rice straw derived-biochar in varying combinations for in situ remediation of soil contaminated with multiple heavy metals, Soil Sci. Plant Nutr., 66 (2) (2020) 379-388. https://doi.org/10.1080/00380768.2020.1725913. DOI: https://doi.org/10.1080/00380768.2020.1725913
Viet N. T. M., Hoa N. T. - Study on adsorption capacity of methylene blue and phenol red on Lao Cai apatite ore, J. Anal. Sci. 22 (2) (2017) 124-131.
Viet N. T. M., Yen L. T. H. – Investigation of adsorption capacity of Mn(II), Ni(II) on Lao Cai apatite ore modified by acid, Vietnam J. Chem. 54 (5e1,2) (2016) 97-101.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.