Preparation of microfluidics device from PMMA for liposome synthesis

Tran Thi Thanh Van , Nguyen Huy Trung, Cao Thi Hong, Vu Quoc Thai, Trinh Quang Dung, Nguyen Thanh Duong
Author affiliations

Authors

  • Tran Thi Thanh Van Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Huy Trung Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Cao Thi Hong Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Vu Quoc Thai Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Trinh Quang Dung Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thanh Duong Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16577

Keywords:

PMMA, microfluidics, liposome, laser engraving

Abstract

Microfluidics has emerged in recent years as a technology that has advantages and is well suited for studying chemistry, biology, and physics at the microscale. A common material which has been widely use to fabricate the microfluidic system is thermoplastic materials. The method of fabricating microfluidic devices has been growing because of advantages such as high-quality feature replication, inexpensiveness, and ease of use. However, the major barrier to the utilization of thermoplastics is the lack of bonding methods for different plastic layers to close the microchannels. Therefore, this study focused on fabricating a microfluidic device on poly(methyl methacrylate) (PMMA) plates by laser engraving. The bonding technique for plastic layers has relied on the application of small amounts of ethanol with conditions of low temperatures (100 ⁰C), and relatively low pressures (5 tons) for 2 minutes. With this technique, the microfluidic device is created to operate stably, without leakage or cracking even under high pressure. The microfluidic device was applied to synthesize liposomes with a 5:1 ratio of syringe pump velocity between water and lipid solution. The size of liposomes after synthesis is 109.64 ± 4.62 nm (mean ± sd) and the PDI is in accordance with standard conditions (PDI < 0.200).

Downloads

Download data is not yet available.

References

Zhao Q., Yuan D., Zhang J., Li W. - A Review of Secondary Flow in Inertial Microfluidics. Micromachines. 11(5) (2020) 461. https://doi.org/10.3390/mi11050461 DOI: https://doi.org/10.3390/mi11050461

Wang T., Yu C. and Xie X. - Microfluidics for Environmental Applications. In: Bahnemann, J., Grünberger, A. (eds) Microfluidics in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 179. Springer, Cham, 2020, pp. 267-290. https://doi.org/10.1007/10_2020_128 DOI: https://doi.org/10.1007/10_2020_128

Hamdallah S. I., Zoqlam R., Erfle P., Blyth M., Alkilany A. M., Dietzel A., Qi S. - Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int. J. Pharm. 584 (2020) 119408. doi: 10.1016/j.ijpharm.2020.119408 DOI: https://doi.org/10.1016/j.ijpharm.2020.119408

Liu, W., He, H., & Zheng, S. Y. - Microfluidics in Single-Cell Virology: Technologies and Applications. Trends Biotechnol. 38 (12) (2020) 1360–1372. https://doi.org/10.1016/j.tibtech.2020.04.010 DOI: https://doi.org/10.1016/j.tibtech.2020.04.010

Dehghani M., Lucas K., Flax J., McGrath J., Gaborski T. - Tangential flow microfluidics for the capture and release of nanoparticles and extracellular vesicles on conventional and ultrathin membranes. Adv. Mater. Technol. 4 (11) (2019) 1900539. https://doi.org/10.1002/admt.201900539 DOI: https://doi.org/10.1002/admt.201900539

Zhang W., Choi D. S., Nguyen Y. H., Chang J., Qin L. - Studying cancer stem cell dynamics on PDMS surfaces for microfluidics device design. Sci. Rep. 3 (2013) 2332. https://doi.org/10.1038/srep02332 DOI: https://doi.org/10.1038/srep02332

Taylor J. M., Perez‐Toralla K., Aispuro R., Morin S. A. - Covalent Bonding of Thermoplastics to Rubbers for Printable, Reel‐to‐Reel Processing in Soft Robotics and Microfluidics. Adv. Mater. 30 (7) (2018) 1705333. https://doi.org/10.1002/adma.201705333 DOI: https://doi.org/10.1002/adma.201705333

Sahore V., Doonan S. R., Bailey R. C. - Droplet microfluidics in thermoplastics: device fabrication, droplet generation, and content manipulation using integrated electric and magnetic fields. Anal. Methods. 10 (35) (2018) 4264-4274. https://doi.org/10.1039/c8ay01474d DOI: https://doi.org/10.1039/C8AY01474D

Zhang W., Lin S., Wang C., Hu J., Li C., Zhuang Z., Zhou Y., Mathies R. A., and Yang C. J. - PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip. 9 (21) (2009) 3088-3094. https://doi.org/10.1039/b907254c DOI: https://doi.org/10.1039/b907254c

Tsao C. W., Hromada L., Liu J., Kumar P., DeVoe D. L. - Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip. 7 (4) (2007) 499. https://doi.org/10.1039/b618901f DOI: https://doi.org/10.1039/b618901f

Wan A. M. D., Moore T. A., Young E. W. K. - Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices. J. Vis. Exp. (119) (2017) 55175. https://doi.org/10.3791/55175 DOI: https://doi.org/10.3791/55175

Zhang Z., Wang X., Luo Y., He S., Wang L. - Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices. Talanta. 81 (4-5) (2010) 1331-1338. https://doi.org/10.1016/j.talanta.2010.02.031 DOI: https://doi.org/10.1016/j.talanta.2010.02.031

Downloads

Published

28-02-2023

How to Cite

[1]
T. T. T. Van, N. Huy Trung, C. T. Hong, V. Q. Thai, T. Q. Dung, and N. T. Duong, “Preparation of microfluidics device from PMMA for liposome synthesis”, Vietnam J. Sci. Technol., vol. 61, no. 1, pp. 84–90, Feb. 2023.

Issue

Section

Materials

Most read articles by the same author(s)