Potential inhibitory activities of phytoconstituents in Salvia miltiorrhiza against coronary heart disease drug targets using docking and ADMET studies
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18215Keywords:
Coronary heart disease, Salvia miltiorrhiza, molecular docking, ADMETAbstract
Coronary heart disease (CHD) is one of the leading causes of death worldwide. The effectiveness of the current drugs is still restricted due to high side effects; thus, it is urgently needed to discover novel compounds for drug development. In the field of drug discovery research, the main target receptors for chemotherapy are identified as ACE, PPAR-γ, HMGR, COX-2, and thrombin. In this study, docking simulations were performed for phytoconstituents of Salvia miltiorrhiza Bunge in searching for compounds with potential inhibitory activities against these proteins. As a result, six compounds were suggested as potential multitarget inhibitors and could be considered for further drug development studies based on docking conformation and ADMET property analysis.
Downloads
References
Gaziano T. A., Bitton A., Anand S., Abrahams-Gessel S., and Murphy A. - Growing Epidemic of Coronary Heart Disease in Low- and Middle-Income Countries, Curr. Probl. Cardiol. 35 (2) (2010) 72-115. https://doi.org/10.1016/j.cpcardiol.2009.10.002.
Sanchis-Gomar F., Perez-Quilis C., Leischik R., and Lucia A. - Epidemiology of coronary heart disease and acute coronary syndrome, Ann. Transl. Med. 4 (13) (2016) 256-256. https://doi.org/10.21037/atm.2016.06.33.
Kandaswamy E. and Zuo L. - Recent Advances in Treatment of Coronary Artery Disease: Role of Science and Technology, Int. J. Mol. Sci. 19 (2) (2018) 424. https://doi.org/ 10.3390/ijms19020424.
Elisaf M. - The Treatment of Coronary Heart Disease: An Update, Curr. Med. Res. Opin. 17 (1) (2008) 18-26. https://doi.org/10.1185/0300799039117021.
Le D., Brown L., Malik K., and Murakami S. - Two Opposing Functions of Angiotensin-Converting Enzyme (ACE) That Links Hypertension, Dementia, and Aging, Int. J. Mol. Sci. 22 (24) (2021) 13178. https://doi.org/10.3390/ijms222413178.
Acharya K. R., Sturrock E. D., Riordan J. F., and Ehlers M. R. W. - Ace revisited: A new target for structure-based drug design, Nat. Rev. Drug Discov. 2 (11) (2003) 891-902. https://doi.org/10.1038/nrd1227.
Robbins G. T. - PPAR gamma, bioactive lipids, and cancer progression, Front. Biosci. 17 (1) (2012) 1816–1834. https://doi.org/10.2741/4021.
Semple R. K. - PPAR and human metabolic disease, J. Clin. Invest. 116 (3) (2006) 581-589. https://doi.org/10.1172/jci28003.
Ojha S., Islam B., Charu C., Adem A., and Aburawi E. - Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking, Drug Des. Devel. Ther. (2015). https://doi.org/10.2147/dddt.S86705.
Chan P. C., Liao M. T., and Hsieh P. S. - The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance, Int. J. Mol. Sci. 20 (13) (2019) 3115. https://doi.org/10.3390/ijms20133115.
Zarghi A. and Arfaei S. - Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships, Iran J. Pharm. Res. 10 (4) (2011) 655-683.
Di Cera E. - Thrombin, Mol. Aspects Med. 29 (4) (2008) 203-254. https://doi.org/10.1016/j.mam.2008.01.001.
Wang L., Ma R., Liu C., Liu H., Zhu R., Guo S., Tang M., Li Y., Niu J., Fu M., Gao S., and Zhang D. - Salvia miltiorrhiza: A Potential Red Light to the Development of Cardiovascular Diseases, Curr. Pharm. Des. 23 (7) (2017) 1077-1097. https://doi.org/10.2174/1381612822666161010105242.
Kang D. G., Oh H., Sohn E. J., Hur T. Y., Lee K. C., Kim K. J., Kim T. Y., and Lee H. S. - Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats, Life Sci. 75 (15) (2004) 1801-1816. https://doi.org/ 10.1016/j.lfs.2004.02.034.
Sun Y., Zhu H., Wang J., Liu Z., and Bi J. - Isolation and purification of salvianolic acid A and salvianolic acid B from Salvia miltiorrhiza by high-speed counter-current chromatography and comparison of their antioxidant activity, J. Chromatogr. B 877 (8-9) (2009) 733-737. https://doi.org/10.1016/j.jchromb.2009.02.013.
Su C. Y., Ming Q. L., Rahman K., Han T., and Qin L. P. - Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology, Chin. J. Nat. Med. 13 (3) (2015) 163-182. https://doi.org/10.1016/s1875-5364(15)30002-9.
Honda G., Koezuka Y., and Tabata M. - Isolation of an antidermatophytic substance from the root of Salvia miltiorrhiza, Chem. Pharm. Bull. (Tokyo) 36 (1) (1988) 408-411. https://doi.org/10.1248/cpb.36.408.
Lu P., Nwafor E., Li J., Zhang Q., Qi D., Liu Z., Peng H., Qin H., Gao Y., and Wang J. - Traditional Chinese medicine of Salvia miltiorrhiza Bunge: a review of phytochemistry, pharmacology and pharmacokinetics, Tradit. Med. Res. 6 (4) (2021) 35. https://doi.org/ 10.53388/tmr20201027204.
The PyMOL Molecular Graphics System, Version 2.4.0, Schrodinger, LLC.
Allouche A. R. - Gabedit-A graphical user interface for computational chemistry softwares, J. Comput. Chem. 32 (1) (2011) 174-182. https://doi.org/10.1002/jcc.21600.
Natesh R., Schwager S. L. U., Evans H. R., Sturrock E. D., and Acharya K. R. - Structural Details on the Binding of Antihypertensive Drugs Captopril and Enalaprilat to Human Testicular Angiotensin I-Converting Enzyme, Biochemistry 43 (27) (2004) 8718-8724. https://doi.org/10.1021/bi049480n.
Hopkins C. R., O’Neil S. V., Laufersweiler M. C., Wang Y., Pokross M., Mekel M., Evdokimov A., Walter R., Kontoyianni M., Petrey M. E., Sabatakos G., Roesgen J. T., Richardson E. and Demuth T. P. - Design and synthesis of novel N-sulfonyl-2-indole carboxamides as potent PPAR-γ binding agents with potential application to the treatment of osteoporosis, Bioorg. Med. Chem. Lett. 16 (21) (2006) 5659-5663. https://doi.org/ 10.1016/j.bmcl.2006.08.003.
Istvan E. S. and Deisenhofer J. - Structural Mechanism for Statin Inhibition of HMG-CoA Reductase, Science 292 (5519) (2001) 1160-1164. https://doi.org/10.1126/ science.1059344.
Kurumbail R. G., Stevens A. M., Gierse J. K., McDonald J. J., Stegeman R. A., Pak J. Y., Gildehaus D., iyashiro J. M., Penning T. D., Seibert K., Isakson P. C., and Stallings W. C. - Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents, Nature 384 (6610) (1996) 644-648. https://doi.org/10.1038/384644a0.
Fokkens J. and Klebe G. - A Simple Protocol To Estimate Differences in Protein Binding Affinity for Enantiomers without Prior Resolution of Racemates, Angew. Chem., Int. Ed. Engl. 45 (6) (2006) 985-989. https://doi.org/10.1002/anie.200502302.
Le T. T. H., Tran L. H., Nguyen M. T., Pham M. Q., and Phung H. T. T. - Calculation of binding affinity of JAK1 inhibitors via accurately computational estimation, J. Biomol. Struct. Dyn. (2022) 1-11. https://doi.org/10.1080/07391102.2022.2118830.
Nguyen N. T., Nguyen T. H., Pham T. N. H., Huy N. T., Bay M. V., Pham M. Q., Nam P. C., Vu V. V., and Ngo S. T. - Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity, J. Chem. Inf. Model. 60 (1) (2019) 204-211. https://doi.org/10.1021/acs.jcim.9b00778.
Falé P. L. V., Araújo M. E. M., Ascensão L. and Serralheiro M. L. M. - Acetylcholinesterase inhibition by Rosmarinic acid from Plectranthus (Lamiaceae) species, Planta Med. 74 (09) (2008) 74-88. https://doi.org/10.1055/s-0028-1084086.
Liao Y., Hu X., Pan J. and Zhang G. - Inhibitory Mechanism of Baicalein on Acetylcholinesterase: Inhibitory Interaction, Conformational Change, and Computational Simulation, Foods 11 (2) (2022). https://doi.org/10.3390/foods11020168.
Liu X., Gao Z. G., Wu Y., Stevens R. C., Jacobson K. A., and Zhao S. - Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y1 and P2Y12 receptors, Sci. Rep. 8 (1) (2018) 8084. https://doi.org/10.1038/s41598-018-26577-0.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.