Antioxidant potential of eight phenolic acids using high-performance density functional theory

Dao Duy Quang, Nguyen Thi Thuy, Hoang Thi Ngoc Anh, Le Thi Thuy Huong, Truong Dinh Hieu, Pham Minh Quan, Pham Quoc Long, Nguyen Manh Cuong, Doan Lan Phuong
Author affiliations

Authors

  • Dao Duy Quang Duy Tan University, Institute of Research and Development, 03 Quang Trung, Danang, Viet Nam http://orcid.org/0000-0003-0896-5168
  • Nguyen Thi Thuy Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Caugiay Dist., HanoiGraduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
  • Hoang Thi Ngoc Anh Institute of Natural Products Chemistry, VAST, 18 Hoang Quoc Viet St., Caugiay Dist., Hanoi, Viet Nam
  • Le Thi Thuy Huong Institute of Natural Products Chemistry, VAST, 18 Hoang Quoc Viet St., Caugiay Dist., Hanoi, Viet Nam
  • Truong Dinh Hieu Duy Tan University, Institute of Research and Development, 03 Quang Trung, Danang, Viet Nam
  • Pham Minh Quan Institute of Natural Products Chemistry, VAST, 18 Hoang Quoc Viet St., Caugiay Dist., Hanoi, Viet Nam
  • Pham Quoc Long Institute of Natural Products Chemistry, VAST, 18 Hoang Quoc Viet St., Caugiay Dist., Hanoi, Viet Nam
  • Nguyen Manh Cuong Institute of Natural Products Chemistry, VAST, 18 Hoang Quoc Viet St., Caugiay Dist., Hanoi, Viet Nam
  • Doan Lan Phuong Institute of Natural Products Chemistry, VAST, 18 Hoang Quoc Viet St., Caugiay Dist., Hanoi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16011

Keywords:

phenolic acid, seed oils, antioxidant, HAT, PL, SET, RAF, DFT

Abstract

Phenolic acids are one of the major fractions identified in the extract of several vegetable seed oils which present interesting antioxidant properties. A density functional theory (DFT) study on the antioxidant potential of eight phenolic acids including gallic, vanillic, isovanillic, ferulic, caffeic, b-coumaric, cinnamic, and chlorogenic acids, is presented in this paper. The bond dissociation enthalpies (BDEs) of C–H and O–H bonds, the proton affinities (PA) and the ionization energies (IEs) were calculated in detail by using the LC-wPBE functional coupled with the 6-311++G(d,p) basis set. The standard Gibbs free energies (DrG0) for the scavenging reactions towards HOO· radical were calculated. In addition, the kinetics of H-atom transfer reaction was evaluated. As a result, the chosen long-range corrected DFT LC-wPBE functional is shown as the highly reliable computational approaches in calculating geometrical properties as well as the thermochemical parameters by comparison with CCSD(T)/aug-cc-pVDZ results. The differences of bond length are about 0.1 Angstroms, while the ones of BDE are only from 0.1 to 0.6 kcal/mol. Furthermore, gallic, caffeic, ferulic and chlorogenic acids represent as the most reactive antioxidants in the reaction with HOO· radical in water occurring via H transfer process with the negative DrG0 ranging from -3.3 kcal/mol for caffeic to -5.9 kcal/mol for ferulic compounds. Kinetic calculations in the gas phase based on transition state theory (TST) for the studied compound confirm that chlorogenic acid is shown as the most reactive antioxidant via HAT process with the lowest activation free energy (i.e. 17.9 kcal/mol) and the highest reaction rate (i.e. 4.20 × 10-19 cm3/molecule/s).

Downloads

Download data is not yet available.

References

A. Galano, G. Mazzone, T. Marino, J. Ra, N. Russo, Food Antioxidants : Chemical Insights at the Molecular Level, Annu. Rev. Food Sci. Technol. 7 (2016) 1–18. https://doi.org/10.1146/annurev-food-041715-033206. DOI: https://doi.org/10.1146/annurev-food-041715-033206

N. Kumar, N. Goel, Phenolic acids: Natural versatile molecules with promising therapeutic applications, Biotechnol. Reports. 24 (2019) e00370. https://doi.org/https://doi.org/10.1016/j.btre.2019.e00370. DOI: https://doi.org/10.1016/j.btre.2019.e00370

L.P. Doan, T.T. Nguyen, M.Q. Pham, Q.T. Tran, Q.L. Pham, D.Q. Tran, V.T. Than, L.G. Bach, Extraction Process, Identification of Fatty Acids, Tocopherols, Sterols and Phenolic Constituents, and Antioxidant Evaluation of Seed Oils from Five Fabaceae Species, Process. . 7 (2019). https://doi.org/10.3390/pr7070456. DOI: https://doi.org/10.3390/pr7070456

L. Tabrizi, T.L.A. Nguyen, H.D.T. Tran, M.Q. Pham, D.Q. Dao, Antioxidant and Anticancer Properties of Functionalized Ferrocene with Hydroxycinnamate Derivatives—An Integrated Experimental and Theoretical Study, J. Chem. Inf. Model. 60 (2020) 6185–6203. https://doi.org/10.1021/acs.jcim.0c00730. DOI: https://doi.org/10.1021/acs.jcim.0c00730

M. Saqib, S. Iqbal, A. Mahmood, R. Akram, Theoretical Investigation for Exploring the Antioxidant Potential of Chlorogenic Acid: A Density Functional Theory Study, Int. J. Food Prop. 19 (2016) 745–751. https://doi.org/10.1080/10942912.2015.1042588. DOI: https://doi.org/10.1080/10942912.2015.1042588

G.L.C. de Souza, K.A. Peterson, Benchmarking Antioxidant-Related Properties for Gallic Acid through the Use of DFT, MP2, CCSD, and CCSD(T) Approaches, J. Phys. Chem. A. 125 (2021) 198–208. https://doi.org/10.1021/acs.jpca.0c09116. DOI: https://doi.org/10.1021/acs.jpca.0c09116

A. Galano, J.R. Alvarez-Idaboy, Kinetics of radical-molecule reactions in aqueous solution: A benchmark study of the performance of density functional methods, J. Comput. Chem. 35 (2014) 2019–2026. https://doi.org/10.1002/jcc.23715. DOI: https://doi.org/10.1002/jcc.23715

O.A. Vydrov, G.E. Scuseria, Assessment of a long-range corrected hybrid functional, J. Chem. Phys. 125 (2006) 234109. https://doi.org/10.1063/1.2409292. DOI: https://doi.org/10.1063/1.2409292

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussion 16 Rev. A.03, (2016).

J.E. Bartmess, Thermodynamics of the Electron and the Proton, J. Phys. Chem. 98 (1994) 6420–6424. DOI: https://doi.org/10.1021/j100076a029

A. V Marenich, C.J. Cramer, D.G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B. 113 (2009) 6378–6396. https://doi.org/10.1021/jp810292n. DOI: https://doi.org/10.1021/jp810292n

S. Miertuš, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981) 117–129. https://doi.org/https://doi.org/10.1016/0301-0104(81)85090-2. DOI: https://doi.org/10.1016/0301-0104(81)85090-2

Z. Markovic, J. Tošovic, D. Milenkovic, S. Markovic, Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents, Comput. Theor. Chem. 1077 (2016) 11–17. https://doi.org/10.1016/j.comptc.2015.09.007. DOI: https://doi.org/10.1016/j.comptc.2015.09.007

A. Galano, J.R. Alvarez-Idaboy, A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity, J. Comput. Chem. 34 (2013) 2430–2445.

E. Dzib, J.L. Cabellos, F. Ortíz-Chi, S. Pan, A. Galano, G. Merino, Eyringpy: A program for computing rate constants in the gas phase and in solution, Int. J. Quantum Chem. 119 (2019) e25686. https://doi.org/10.1002/qua.25686. DOI: https://doi.org/10.1002/qua.25686

A. Galano, J.R. Alvarez-Idaboy, A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity, J. Comput. Chem. 34 (2013) 2430–2445. https://doi.org/10.1002/jcc.23409. DOI: https://doi.org/10.1002/jcc.23409

Downloads

Published

23-02-2022

How to Cite

[1]
D. Duy Quang, “Antioxidant potential of eight phenolic acids using high-performance density functional theory”, Vietnam J. Sci. Technol., vol. 60, no. 1, pp. 21–32, Feb. 2022.

Issue

Section

Natural Products

Most read articles by the same author(s)