SERS chemical enhancement of 2,4,5-trichlorophenoxyacetic acid absorbed on Au20, its Au-Ag and Au-Cu bimetallic clusters: a DFT study

Thi Thuy Huong Le, Dinh Hieu Truong, Thi Le Anh Nguyen, Pham Minh Quan, Thi Chinh Ngo, Dao Duy Quang
Author affiliations

Authors

  • Thi Thuy Huong Le Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Ha Noi, Viet Nam
  • Dinh Hieu Truong Institute of Research and Development, Duy Tan University, 03 Quang Trung St., Da Nang, Viet Nam
  • Thi Le Anh Nguyen Institute of Research and Development, Duy Tan University, 03 Quang Trung St., Da Nang, Viet Nam
  • Pham Minh Quan Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi
  • Thi Chinh Ngo Institute of Research and Development, Duy Tan University, 03 Quang Trung St., Da Nang, Viet Nam
  • Dao Duy Quang Institute of Research and Development, Duy Tan University, 03 Quang Trung St., Da Nang, Viet Nam https://orcid.org/0000-0003-0896-5168

DOI:

https://doi.org/10.15625/2525-2518/16090

Keywords:

2, 4, 5-T, herbicide, Raman, SERS, cluster, DFT

Abstract

The surface-enhanced Raman scattering (SERS) phenomenon of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) adsorbed on Au20 pyramidal cluster is studied by Density Functional Theory. All possible adsorption configurations between the adsorbate and the Au20 clusters are evaluated and the vibrational assignments of normal Raman and SERS spectra are analyzed. The result shows that the most stable adsorption configuration of the adsorbate on Au20 cluster is formed by the interaction of O13 (-COOH group) and Au atom. The SERS activities of 2,4,5-T adsorbed on 1:1 Au-Ag and Au-Cu bimetallic clusters are also investigated. For bimetallic clusters, the substitution of 1, 4 or 10 Au atoms by Ag/Cu is performed by replacing the respective number of Ag/Cu atoms in 1, 2 and 3 parallel layers of the Au20 cluster. While the Raman scattering activity of the Au10Ag10 cluster is comparable to that of the Au20 cluster, it is remarkably higher than the Au10Cu10 cluster. This observation is explained by the molecule-to-cluster charge transfer process. The obtained results are hoped to contribute to better design of SERS-based analytical sensors for mobile and on-site applications.

Downloads

Download data is not yet available.

References

Hayashi S., Sano T., Suyama K., Itoh K. - 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94, Microbiol. Res. 188–189 (2016) 62-71. https://doi.org/10.1016/j.micres.2016.04.014. DOI: https://doi.org/10.1016/j.micres.2016.04.014

Sodhy P. - The US-Malaysian nexus: Themes in superpower-small state relations, Institute of Strategic and International Studies, Malaysia, 1991.

Horvath R. S. - Microbial co-metabolism and the degradation of organic compounds in nature, Bacteriol. Rev. 36 (1972) 146-155. https://pubmed.ncbi.nlm.nih.gov/4557166. DOI: https://doi.org/10.1128/br.36.2.146-155.1972

Gunther F. A. - Residue Reviews: Reviews of Environmental Contamination and Toxicology, Springer Science & Business Media, 1984. DOI: https://doi.org/10.1007/978-1-4612-5268-9

Langer J., Jimenez de Aberasturi D., Aizpurua J., Alvarez-Puebla R. A., Auguié B., Baumberg J. J., Bazan G. C., Bell S. E. J., Boisen A., Brolo A. G., Choo J., Cialla-May D., Deckert V., Fabris L., Faulds K., García de Abajo F. J., Goodacre R., Graham D., Haes A. J., Haynes C. L., Huck C., Itoh T., Käll M., Kneipp J., Kotov N. A., Kuang H., Le Ru E. C., Lee H. K., Li J. F., Ling X. Y., Maier S. A., Mayerhöfer T., Moskovits M., Murakoshi K., Nam J. M., Nie S., Ozaki Y., Pastoriza-Santos I., Perez-Juste J., Popp J., Pucci A., Reich S., Ren B., Schatz G. C., Shegai T., Schlücker S., Tay L. L., Thomas K. G., Tian Z. Q., Van Duyne R. P., Vo-Dinh T., Wang Y., Willets K. A., Xu C., Xu H., Xu Y., Yamamoto Y. S., Zhao B., Liz-Marzán L. M. - Present and Future of Surface-Enhanced Raman Scattering, ACS Nano 14 (1) (2020) 28-117. https://doi.org/10.1021/acsnano.9b04224. DOI: https://doi.org/10.1021/acsnano.9b04224

Karthikeyan N., Joseph Prince J., Ramalingam S., Periandy S. - Vibrational spectroscopic [FT-IR, FT-Raman] investigation on (2,4,5-Trichlorophenoxy) Acetic acid using computational [HF and DFT] analysis, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124 (2014) 165-177. https://doi.org/10.1016/j.saa.2013.12.105. DOI: https://doi.org/10.1016/j.saa.2013.12.105

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J. - Gaussion 16 Rev. A.03 (2016).

Perdew J. P., Burke K., Ernzerhof M. - Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868. https://doi.org/10.1103 /PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Perdew J. P., Burke K., Ernzerhof M. - Errata: Generalized gradient approximation made simple, Phys. Rev. Lett. 78 (1997) 1396. DOI: https://doi.org/10.1103/PhysRevLett.78.1396

Ngo T.C., Trinh Q.T., Thi Thai An N., Tri N.N., Trung N.T., Truong D.H., Huy B.T., Nguyen M.T., Dao D.Q., SERS Spectra of the Pesticide Chlorpyrifos Adsorbed on Silver Nanosurface: The Ag20 Cluster Model, J. Phys. Chem. C. 124 (2020) 21702-21716. https://doi.org/10.1021/acs.jpcc.0c06078. DOI: https://doi.org/10.1021/acs.jpcc.0c06078

Rowland R.S., Taylor R., Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii, J. Phys. Chem. 100 (1996) 7384-7391. https://doi.org/10.1021/jp953141+. DOI: https://doi.org/10.1021/jp953141+

Truong D. H., Ngo T. C., Ai Nhung N. T., Quang D. ., Dao D. Q. - SERS chemical enhancement by copper - nanostructures: Theoretical study of Thiram pesticide adsorbed on Cu20 cluster, Vietnam J. Chem. 59 (2020) 159-166.

Downloads

Published

23-03-2022

How to Cite

[1]
T. T. H. Le, D. H. Truong, T. L. A. Nguyen, Pham Minh Quan, T. C. Ngo, and D. Duy Quang, “SERS chemical enhancement of 2,4,5-trichlorophenoxyacetic acid absorbed on Au20, its Au-Ag and Au-Cu bimetallic clusters: a DFT study”, Vietnam J. Sci. Technol., vol. 60, no. 4, pp. 641–651, Mar. 2022.

Issue

Section

Materials

Most read articles by the same author(s)