An application of feature selection for the fuzzy rule based classifier design with the order based sematics of linguistic terms for high-dimensional datasets
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/31/2/5025Keywords:
Hedge algebras, fuzzy classification system, feature selection, high-dimensional dataset.Abstract
The fuzzy rule based classification system (FRBCS) design methods, whose fuzzy rules are in the form of if-then sentences, have been under intensive study during last years. One of the outstanding FRBCS design methods utilizing hedge algebras as a mathematical formalism is proposed in [12]. As in other methods, a difficult problem with the high-dimensional and multi-instance datasets needs to be solved. This paper presents an approach to tackle the high-dimensional dataset problem for the hedge algebras based classification method proposed in [12] by utilizing the feature selection algorithm proposed in [18]. The experimental results over eight high-dimensional datasets have shown that the proposed method saves much execution time than the original one, while retaining the equivalent classification performance as well as the equivalent FRBCS complexity. The proposed method is also compared with three classical classification methods based on the statistical and probabilistic approaches showing that it is a robust classifier.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.