Preparation and antibacterial effect in vitro against Pantoea stewartii causing jackfruit bronzing bacterium of ZnO/chitosan oligosaccharide-iodine complex nanomaterial

Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/18489

Keywords:

Pantoea stewartii, nano ZnO/COS, nano ZnO/COS-I2, jackfruit

Abstract

Nano ZnO/chitosan oligosaccharide (ZnO/COS) and nano ZnO/chitosan oligosaccharide-iodine complex (ZnO/COS-I2) prepared in this study are new materials consisting of ZnO nanoparticles (12.3 - 15.0 nm) dispersed in COS and COS-I2 solutions. Both ZnO/COS and ZnO/COS-I2 nanomaterials have the ability to resist Pantoea stewartii (P. stewartii) causes jackfruit bronzing bacterium. The COS with a low molecular weight (Mw) of 3,320 g/mol has the main advantage that is completely soluble in both acidic and alkaline mediums to pH 9. The characterizations of materials nanomaterials were determined by gel permeation chromatography (GPC), nuclear magnetic resonance (1H-NMR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results of the in vitro test against P. stewartii of ZnO/COS-I2 nanomaterial showed that the antibacterial efficacy is 100% at 500 ppm of active ingredient concentration. The studied results also confirmed that nano ZnO/COS-I2 nanomaterial has the ability to inhibit bacteria higher than that nano ZnO/COS nanomaterial. Therefore, the ZnO/COS-I2 nanomaterial has great potential to use as an effective agent to control the serious damage jackfruit bronzing bacterium and has no specific treatment.

Downloads

Download data is not yet available.

References

Beek W. J., Wienk M. M., Janssen R. A. - Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater., 16 (2004) 1009-1013. doi.org/10.1002/adma.200306659. DOI: https://doi.org/10.1002/adma.200306659

Suliman A. E., Tang Y., Xu L. - Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells, 91 (2007) 1658-1662. doi.org/10.1016/j.solmat.2007.05.014. DOI: https://doi.org/10.1016/j.solmat.2007.05.014

Baruwati B., Kumar D. K., Manorama S. V. - Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH. Sens. Actuators B: Chem., 119 (2006) 676-682. doi.org/10.1016/j.snb.2006.01.028. DOI: https://doi.org/10.1016/j.snb.2006.01.028

Vaseem M., Umar A., Hahn Y. B. - ZnO nanoparticles: Growth, properties, and applications. Metal oxide nanostructures and their applications, Metal Oxide Nanostructures and Their Applications, American Scientific Publishers (2010).

Chang S. P., Chen K. J. - Zinc oxide nanoparticle photodetector. J. Nanomater., 2012 (2012). doi.org/10.1155/2012/602398. DOI: https://doi.org/10.1155/2012/602398

Mishchenko T., Mitroshina E., Balalaeva I., Krysko O., Vedunova M., Krysko D. V. - An emerging role for nanomaterials in increasing immunogenicity of cancer cell death. Biochim. Biophys. Acta (BBA)-Rev. Cancer, 1871 (2019) 99-108. doi.org/10.1016/j.bbcan.2018.11.004. DOI: https://doi.org/10.1016/j.bbcan.2018.11.004

Houšková V., Štengl V., Bakardjieva S., Murafa N., Kalendova A., Opluštil F. - Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity. J. Phys. Chem. A, 111 (2007) 4215-4221. doi.org/10.1021/jp070878d. DOI: https://doi.org/10.1021/jp070878d

Dadi R., Azouani R., Traore M., Mielcarek C., Kanaev A. - Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains, Mater. Sci. Eng.: C, 104 (2019). doi.org/10.1016/j.msec.2019.109968. DOI: https://doi.org/10.1016/j.msec.2019.109968

Nagajyothi P. C., Cha S. J., Yang I. J., Sreekanth T. V. M., Kim K. J., Shin H. M. - Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B: Biol., 146 (2015) 10-17. doi.org/10.1016/j.jphotobiol.2015.02.008. DOI: https://doi.org/10.1016/j.jphotobiol.2015.02.008

Agarwal H., Shanmugam V. - A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorg. Chem., 94 (2020) doi.org/10.1016/j.bioorg.2019.103423. DOI: https://doi.org/10.1016/j.bioorg.2019.103423

Mishra P. K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B. - Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discovery Today, 22 (2017) 1825-1834. doi.org/10. DOI: https://doi.org/10.1016/j.drudis.2017.08.006

Wang Y., Song S., Liu J., Liu D., Zhang H. - ZnO‐functionalized upconverting nanotheranostic agent: Multi‐modality imaging‐guided chemotherapy with on‐demand drug release triggered by pH. Angew. Chem. Int. Ed., 54 (2015) 536-540. doi.org/10.1002/anie.201409519.1016/j.drudis.2017.08.006. DOI: https://doi.org/10.1002/anie.201409519

Eixenberger J. E., Anders C. B., Wada K., Reddy K. M., Brown R. J., Moreno-Ramirez J., Weltner A. E., Karthik C., Tenne D. A., Fologea D., Wingett D. G. - Defect engineering of ZnO nanoparticles for bioimaging applications. ACS Appl. Mater. Interfaces, 11 (2019) 24933-24944. doi.org/10.1021/acsami.9b01582. DOI: https://doi.org/10.1021/acsami.9b01582

Umrani R. D., Paknikar K. M. - Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomed., 9 (2014) 89-104. doi.org/10.2217/nnm.12.205. DOI: https://doi.org/10.2217/nnm.12.205

El-Gharbawy R. M., Emara A. M., Abu-Risha S. E. S. - Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed. Pharmacother., 84 (2016) 810-820. doi.org/10.1016/j.biopha.2016.09.068. DOI: https://doi.org/10.1016/j.biopha.2016.09.068

Kalia A., Abd-Elsalam K. A., Kuca K. - Zinc-based nanomaterials for diagnosis and management of plant diseases: Ecological safety and future prospects. J. Fungi, 6 (2020). doi.org/10.3390/jof6040222. DOI: https://doi.org/10.3390/jof6040222

Reddy K. M., Feris K., Bell J., Wingett D. G., Hanley C., Punnoose A. - Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett., 90 (2007). doi.org/10.1063/1.2742324. DOI: https://doi.org/10.1063/1.2742324

Hanley C., Layne J., Punnoose A., Reddy K., Coombs I., Coombs A., Feris K., Wingett D. - Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnol., 19 (2008). doi.org/10.1088/0957-4484/19/29/295103. DOI: https://doi.org/10.1088/0957-4484/19/29/295103

Premanathan M., Karthikeyan K., Jeyasubramanian K., Manivannan G. - Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol., Biol. Med., 7 (2011) 184-192. doi.org/10.1016/j.nano.2010.10.001. DOI: https://doi.org/10.1016/j.nano.2010.10.001

Jiang J., Pi J., Cai J. - The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl., 2018 (2018). doi.org/10.1155/2018/1062562 DOI: https://doi.org/10.1155/2018/1062562

Pinto R. M., Lopes-de-Campos D., Martins M. C. L., Van Dijck P., Nunes C., Reis S. - Impact of nanosystems in Staphylococcus aureus biofilms treatment, FEMS Microbiol. Rev., 43 (2019) 622-641. doi.org/10.1093/femsre/fuz021. DOI: https://doi.org/10.1093/femsre/fuz021

Carvalho R., Duman K., Jones J. B., Paret M. L. - Bactericidal activity of copper-zinc hybrid nanoparticles on copper-tolerant Xanthomonas perforans, Sci. Rep., 9 (2019). doi.org/10.1038/s41598-019-56419-6. DOI: https://doi.org/10.1038/s41598-019-56419-6

Siddiqui Z. A., Khan A., Khan M. R., Abd-Allah E. F. - Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris Medik.). Acta Phytopathol. Entomol. Hung., 53 (2018) 195-211. doi.org/10.1556/038.53.2018.012. DOI: https://doi.org/10.1556/038.53.2018.012

Khan M., Siddiqui Z. A. - Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol., 71 (2018) 355-364. doi.org/10.1007/s42360-018-0064-5. DOI: https://doi.org/10.1007/s42360-018-0064-5

Elsharkawy M., Derbalah A., Hamza A., El-Shaer A. - Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ. Sci. Pollut. Res., 27 (2020) 19049-19057. doi.org/10.1007/s11356-018-3806-0. DOI: https://doi.org/10.1007/s11356-018-3806-0

Sirelkhatim A., Mahmud S., Seeni A., Kaus N. H. M., Ann L. C., Bakhori S. K. M., Hasan H., Mohamad D. - Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano Micro Lett., 7 (2015) 219-242. doi.org/10.1007/s40820-015-0040-x. DOI: https://doi.org/10.1007/s40820-015-0040-x

Zhang J., Sun Yin Su H., Liao Yan C. - Control of ZnO morphology via a simple solution route, Chem. Mater., 14 (2002) 4172-4177. doi.org/10.1021/cm020077h. DOI: https://doi.org/10.1021/cm020077h

Liu Y. J., He L. L., Mustapha A., Li H., Hu Z. Q., Lin M. S. - Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol., 107 (2009) 1193-1201. doi.org/10.1111/j.1365-2672.2009.04303.x. DOI: https://doi.org/10.1111/j.1365-2672.2009.04303.x

Dutta R. K., Nenavathu B. P., Gangishetty M. K., Reddy A. V. R. - Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf., B, 94 (2012) 143-150. doi.org/10.1016/j.colsurfb.2012.01.046. DOI: https://doi.org/10.1016/j.colsurfb.2012.01.046

Gold K., Slay B., Knackstedt M., Gaharwar A. K. - Antimicrobial activity of metal and metal‐oxide based nanoparticles. Adv. Ther., 1 (2018). doi.org/10.1002/adtp.201700033. DOI: https://doi.org/10.1002/adtp.201700033

Saha R. K., Debanath M. K., Paul B., Medhi S., Saikia E. - Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures. Sci. Rep., 10 (2020) 1-14. doi.org/10.1038/s41598-020-59534-x. DOI: https://doi.org/10.1038/s41598-020-59534-x

Xie Y., He Y., Irwin P. L., Jin T., Shi X. - Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 77 (2011) 2325-2331. doi.org/10.1128/AEM.02149-10. DOI: https://doi.org/10.1128/AEM.02149-10

Janaki A. C., Sailatha E., Gunasekaran S. - Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta, Part A Mol. Biomol. Spectrosc., 144 (2015) 17-22. doi.org/10.1016/j.saa.2015.02.041. DOI: https://doi.org/10.1016/j.saa.2015.02.041

Akbar A., Sadiq M. B., Ali I., Muhammad N., Rehman Z., Khan M. N., Rehman F. U., Anal A. K. - Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatal. Agric. Biotechnol., 17 (2019) 36-42. doi.org/10.1016/j.bcab.2018.11.005. DOI: https://doi.org/10.1016/j.bcab.2018.11.005

Yusof N. A. A., Zain N. M., Pauzi N. - Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int. J. Biol. Macromol., 124 (2019) 1132-1136. doi.org/10.1016/j.ijbiomac.2018.11.228. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.228

Azam A., Ahmed A. S., Oves M., Khan M. S., Habib S. S., Memic A. - Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed., 7 (2012) 6003-6009. doi.org/10.2147/IJN.S35347. DOI: https://doi.org/10.2147/IJN.S35347

Alias S. S., Mohamad A. A. - Synthesis of zinc oxide by sol-gel method for photoelectrochemical cells, Springer Singapore, Singapore, 2014 DOI: https://doi.org/10.1007/978-981-4560-77-1

da Silva B. L., Caetano B. L., Chiari-Andréo B. G., Pietro R. C. L. R., Chiavacci L. A. - Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf., B, 177 (2019) 440-447. doi.org/10.1016/j.colsurfb.2019.02.013. DOI: https://doi.org/10.1016/j.colsurfb.2019.02.013

Souza R. C. D., Haberbeck L. U., Riella H. G., Ribeiro D. H., Carciofi B. A. - Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Braz. J. Chem. Eng., 36 (2019) 885-893. doi.org/10.1590/0104-6632.20190362s20180027. DOI: https://doi.org/10.1590/0104-6632.20190362s20180027

Khan M. F., Hameedullah M., Ansari A. H., Ahmad E., Lohani M. B., Khan R. H., Alam M. M., Khan W., Husain F. M., Ahmad I. - Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties. Int. J. Nanomed., 9 (2014) 853-864. doi.org/10.2147/IJN.S47351. DOI: https://doi.org/10.2147/IJN.S47351

Tran N., Mir A., Mallik D., Sinha A., Nayar S., Webster T. J. - Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomed., 5 (2010) 277-283. doi.org/10.2147/IJN.S9220. DOI: https://doi.org/10.2147/IJN.S9220

AbdElhady M. M. - Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection tocotton fabric. Int. J. Carbohydr. Chem., 2012 (2012). doi.org/10.1155/2012/840591. DOI: https://doi.org/10.1155/2012/840591

Kavitha A., Doss A., Pole R. P., Rani T. K. P., Prasad R., Satheesh S. - A mini review on plant-mediated zinc oxide nanoparticles and their antibacterial potency. Biocatal. Agric. Biotechnol., 48 (2023). doi.org/10.1016/j.bcab.2023.102654. DOI: https://doi.org/10.1016/j.bcab.2023.102654

Feng T., Du Y., Li J., Wei Y., Yao P. - Antioxidant activity of half N-acetylated water-soluble chitosan in vitro. Eur. Food Res. Technol., 225 (2007) 133-138. doi.org/10.1007/s00217-006-0391-0. DOI: https://doi.org/10.1007/s00217-006-0391-0

Du D. X., Vuong B. X. - Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity. Adv. Mater. Sci. Eng., 2019 (2019). doi.org/10.1155/2019/8781013. DOI: https://doi.org/10.1155/2019/8781013

Dai T., Tanaka M., Huang Y. Y., Hamblin M. R. - Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev. Anti-Infect. Ther., 9 (2011) 857-879. doi.org/10.1586/eri.11.59. DOI: https://doi.org/10.1586/eri.11.59

Li P., Cao Z., Wu Z., Wang X., Li X. - The effect and action mechanisms of oligochitosan on control of stem dry rot of Zanthoxylum bungeanum. Int. J. Mol. Sci., 17 (2016). doi.org/10.3390/ijms17071044. DOI: https://doi.org/10.3390/ijms17071044

Qian J., Wang Q., Chen Y., Mo C., Liang C., Guo H. - The correlation of molecule weight of chitosan oligomers with the corresponding viscosity and antibacterial activity. Carbohydr. Res., 530 (2023). doi.org/10.1016/j.carres.2023.108860. DOI: https://doi.org/10.1016/j.carres.2023.108860

Pillai C. K., Paul W., Sharma C. P. - Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 34 (2009) 641-678. doi.org/10.1016/j.progpolymsci.2009.04.001. DOI: https://doi.org/10.1016/j.progpolymsci.2009.04.001

Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. - Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol., 87 (2013) 1181-1200. doi.org/10.1007/s00204-013-1079-4. DOI: https://doi.org/10.1007/s00204-013-1079-4

Du B. D., Dung L. T. K., Khoa V. N. D., Thang N. D., Tuan L. N. A. - Chitinase-induced resistance against Neoscytalidium dimidiatum on dragon trees: The effect of oligochitosan prepared by the heterogeneous degradation of chitosan with H2O2 under hydrothermal conditions. Vietnam J. Chem., 53 (2015) 161-165. doi.org/10.15625/0866-7144.2015-00107.

Medrano-Macías J., Leija-Martínez P., González-Morales S., Juárez-Maldonado A., Benavides-Mendoza A. - Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant Sci., 7 (2016). doi.org/10.3389/fpls.2016.01146. DOI: https://doi.org/10.3389/fpls.2016.01146

Hassan E. M. - Ionic chitosan-iodine complexes: Antiseptic hydrogels and wound healing promoters. U.S. Patent No. 6,521,243, Washington, DC: U.S. Patent and Trademark Office, 2003.

Zemljič L. F., Peršin Z., Šauperl O., Rudolf A., Kostić M. - Medical textiles based on viscose rayon fabrics coated with chitosan-encapsulated iodine: Antibacterial and antioxidant properties. Text. Res. J., 88 (2018) 2519-2531. doi.org/10.1177/0040517517725. DOI: https://doi.org/10.1177/0040517517725117

Yajima H., Morita M., Hashimoto M., Sashiwa H., Kikuchi T., Ishii T. - Complex Formation of Chitosan with Iodine and Its Structure and Spectroscopic Properties-Molecular Assembly and Thermal Hysteresis Behavior. Int. J. Thermophys., 22 (2001) 1265-1283. doi.org/10.1023/A:1010628712529. DOI: https://doi.org/10.1023/A:1010628712529

Banerjee M., Mallick S., Paul A., Chattopadhyay A., Ghosh S. S. - Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir, 26 (2010) 5901-5908. doi.org/10.1021/la9038528. DOI: https://doi.org/10.1021/la9038528

Mallick S., Sharma S., Banerjee M., Ghosh S. S., Chattopadhyay A., Paul A. - Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl. Mater. Interfaces, 4 (2012) 1313-1323. doi.org/10.1021/am201586w. DOI: https://doi.org/10.1021/am201586w

Tri M. V., Hoa N. V., Chau N. M., Pane A., Faedda R., De Patrizio A., Schena L., Olsson C. H. B., Wright S. A. I, Ramstedt M., Cacciola S. O. - Decline of jackfruit (Artocarpus heterophyllus) incited by Phytophthora palmivora in Vietnam. Phytopathol. Mediterr., 54 (2015) 275-280. doi.org/10.14601/Phytopathol_Mediterr-15008.

Chung M. D., Duc T. H., Kieu N. T., Phuong N. D., Ha N. T., Canh N. X., Giang N. V., Hien P. H., Yen N. H., Duc N. T. - Pests and diseases survey on jackfruit trees in Hau Giang province. Mon. J., 6 (2022) 79-86. DOI: 10.32945/atr3612.2014

Gapasin R. M., Garcia R. P., Advincula C. T., De la Cruz C. S., Borines L. M. - Fruit bronzing: a new disease affecting jackfruit caused by (smith) mergaert Pantoea stewartii et al. Annal. Trop. Res., 36 (2014) 17-31. DOI: https://doi.org/10.32945/atr3612.2014

Ibrahim R., Ismail S. I., Ina-Salwany M. Y., Zulperi D. - Biology, Diagnostics, Pathogenomics and Mitigation Strategies of Jackfruit-Bronzing Bacterium Pantoea stewartii subspecies stewartii: What Do We Know So Far about This Culprit?. Hortic., 8 (2022). doi.org/10.3390/horticulturae8080702. DOI: https://doi.org/10.3390/horticulturae8080702

Jeger M., Bragard C., Candresse T., Chatzivassiliou E., Dehnen‐Schmutz K., Gilioli G., Caffier D. - Pest categorisation of Pantoea stewartii subsp. stewartii. EFSA J., 16 (2018). doi.org/10.2903/j.efsa.2018.5356. DOI: https://doi.org/10.2903/j.efsa.2018.5356

Lavertu M., Xia Z., Serreqi A. N., Berrada M., Rodrigues A., Wang D., Buschmann M. D., Gupta A. - A validated 1H-NMR method for the determination of the degree of deacetylation of chitosan. J. Pharm. Biomed. Anal., 32 (2003) 1149-1158. doi.org/10.1016/S0731-7085(03)00155-9. DOI: https://doi.org/10.1016/S0731-7085(03)00155-9

Dey S. C., Al-Amin M., Rashid T. U., Sultan M. Z., Ashaduzzaman M., Sarker M., Shamsuddin S. M. - Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red. Int. J. Latest Res. Eng. Technol., 2 (2016) 52-62.

El-Masry R. M., Talat D., Hassoubah S. A., Zabermawi N. M., Eleiwa N. Z., Sherif R. M., Abourehab M. A. S., Abdel-Sattar R. M., Gamal M., Ibrahim M. S., Elbestawy A. - Evaluation of the Antimicrobial Activity of ZnO Nanoparticles against Enterotoxigenic Staphylococcus aureus. Life, 12 1662 (2022). doi.org/10.3390/life12101662. DOI: https://doi.org/10.3390/life12101662

Wiegand I., Hilpert K., Hancock R. E. - Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 3 (2008) 163-175. doi.org/10.1038/nprot.2007.521. DOI: https://doi.org/10.1038/nprot.2007.521

Du B. D., Phu D. V., Quoc L. A., Hien N. Q. - Synthesis and investigation of antimicrobial activity of Cu2O nanoparticles/zeolite. J. Nanopart., 2017 (2017). doi.org/10.1155/2017/7056864. DOI: https://doi.org/10.1155/2017/7056864

Podgorbunskikh E., Kuskov T., Rychkov D., Lomovskii O., Bychkov A. - Mechanical Amorphization of Chitosan with Different Molecular Weights. Polym., 14 (2022). doi.org/10.3390/polym14204438. DOI: https://doi.org/10.3390/polym14204438

Shigeno Y., Kondo K., Takemoto K. - Functional monomers and polymers, 74. Physico‐chemical study on the chitosan‐iodine complexes. Die Angew. Makromol. Chem., 91 (1980) 55-67. doi.org/10.1002/apmc.1980.050910105. DOI: https://doi.org/10.1002/apmc.1980.050910105

Thanh N. N., Thinh N. N., Anh N. V. - In Situ Synthesis and Characterization of ZnO/Chitosan nanocomposite as an adsorbent for removal of congo red from aqueous solution. Adv. Polym. Technol., 2020 (2020) 1-8. doi.org/10.1155/2020/3892694. DOI: https://doi.org/10.1155/2020/3892694

Khairullin R. M., Akhmetova I. E. - Luminol-dependent chemiluminescence analysis of chitooligosaccharide-induced rapid production of hydrogen peroxide by intact wheat seedlings. Biochem., 66 (2001) 282-285. doi.org/10.1023/A:1010295628653. DOI: https://doi.org/10.1023/A:1010295628653

Ozeretskovskaya O. L., Vasyukova N. I., Panina Y. S., Chalenko G. I. - Effect of immunomodulators on potato resistance and susceptibility to Phytophthora infestans. Russ. J. Plant Physiol., 53 (2006) 488-494. doi.org/10.1134/S1021443706040091. DOI: https://doi.org/10.1134/S1021443706040091

Burkhanova G. F., Yarullina L. G., Maksimov I. V. - The control of wheat defense responses during infection with Bipolaris sorokiniana by chitooligosaccharides. Russ. J. Plant Physiol., 54 (2007) 104-110. doi.org/10.1134/S1021443707010153. DOI: https://doi.org/10.1134/S1021443707010153

Gudkov S. V., Burmistrov D. E., Serov D. A., Rebezov M. B., Semenova A. A., Lisitsyn A. B. - A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys., 9 (2021). doi.org/10.3389/fphy.2021.641481. DOI: https://doi.org/10.3389/fphy.2021.641481

Emami-Karvani Z., Chehrazi P. - Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res., 5 (2011) 1368-1373. doi.org/10.5897/AJMR10.159. DOI: https://doi.org/10.5897/AJMR10.159

Rutherford D., Jíra J., Kolářová K., Matolínová I., Mičová J., Remeš Z., Rezek B. - Growth inhibition of gram-positive and gram-negative bacteria by zinc oxide hedgehog particles. Int. J. Nanomed., 16 (2021) 3541-3554. doi.org/10.2147/IJN.S300428. DOI: https://doi.org/10.2147/IJN.S300428

Nandhini M., Rajini S. B., Udayashankar A. C., Niranjana S. R., Lund O. S., Shetty H. S., Prakash H. S. - Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot., 121 (2019) 103-112. doi.org/10.1016/j.cropro.2019.03.015. DOI: https://doi.org/10.1016/j.cropro.2019.03.015

Vera‐Reyes I., Esparza‐Arredondo I. J. E., Lira‐Saldivar R. H., Granados‐Echegoyen C. A., Alvarez‐Roman R., Vásquez‐López A., Santos-Villarreal G., Díaz‐Barriga Castro E. - In vitro antimicrobial effect of metallic nanoparticles on phytopathogenic strains of crop plants, J. Phytopathol., 167 (2019) 461-469. doi.org/10.1111/jph.12818. DOI: https://doi.org/10.1111/jph.12818

Downloads

Published

03-11-2023

How to Cite

[1]
D. D. Bui, T. H. P. Nguyen, L. N. A. Tuan, P. T. Tran, and Q. H. Nguyen, “Preparation and antibacterial effect in vitro against Pantoea stewartii causing jackfruit bronzing bacterium of ZnO/chitosan oligosaccharide-iodine complex nanomaterial”, Vietnam J. Sci. Technol., vol. 61, no. 4, Nov. 2023.

Issue

Section

Materials