Capability of Cu2ONPs/diatomite material in growth inhibition and removal of Microcystis aeruginosa in aquacultute cultivation

Thi Nga Dinh, T. Thuy Nhung Dang, Dinh Tuan Phan, Thanh Luu Pham, T. Hoang Yen Tran, Quoc Hien nguyen
Author affiliations

Authors

  • Thi Nga Dinh Hochiminh City University of Natural Resources and Environment, 236B, Le Van Sy Street, Tan Binh District, Ho Chi Minh City, Viet Nam
  • T. Thuy Nhung Dang Hochiminh City University of Natural Resources and Environment, 236B, Le Van Sy Street, Tan Binh District, Ho Chi Minh City, Viet Nam
  • Dinh Tuan Phan Hochiminh City University of Natural Resources and Environment, 236B, Le Van Sy Street, Tan Binh District, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-9363-3434
  • Thanh Luu Pham Institute of Tropical Biology, Vietnam Academy of Science and Technology, 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, Viet Nam
  • T. Hoang Yen Tran Institute of Tropical Biology, Vietnam Academy of Science and Technology, 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, Viet Nam
  • Quoc Hien nguyen Vietnam Atomic Energy Institute, 59 Ly Thuong Kiet Street, Hoan Kiem District, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/59/6/15574

Keywords:

Cu2O, nanoparticles, diatomite, cyanobacteria bloom, Microcystis aeruginosa.

Abstract

Cu2O nanoparticles (Cu2ONPs) with particle size of ~27.4 nm deposited on diatomite (Cu2ONPs/diatomite), a new low-cost material has been used to investigate growth inhibit, and bloom preventation of cyanobacteria in eutrophic waters. Diatomite collected from natural mines was also used in the experiments. Microcystis aeruginosa strain originated from Bac Lieu shrimp pond was isolated and cultured in Z8 medium.  Experiments were conducted by exposing M. aeruginosa to Cu2ONPs/diatomite and diatomite at concentrations of 0.1, 0.2, and 0.5 g/L for 72 hours and 120 hours. The results showed that the concentration of 0.5 g/L in 120 hours, Cu2ONPs/diatomite was more effective in inhibiting and removing of M. aeruginosa cells than diatomite. Therefore, Cu2ONPs/diatomite could be used as a promising material for removing cyanobacterial bloom in water for aquaculture.

Downloads

Download data is not yet available.

References

Amorim, C. A., Moura-Falcão, R. H. D., Valença, C. R., Souza, V. R. D., Moura, A. D. N. - Allelopathic effects of the aquatic macrophyte Ceratophyllum demersum L. on phytoplankton species: contrasting effects between cyanobacteria and chlorophytes, Acta Limnologica Brasiliensia 31(2019), e21. DOI: https://doi.org/10.1590/s2179-975x1419

Belcher H. - Culturingalgae-A guide for school and colleagues, The Ferry House, UK (1988) 20-21.

Chen, J., Qian, Y., Li, H., Cheng, Y., & Zhao, M. - The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa, Environmental Science and Pollution Research 22(16) (2015), 12407-12414. DOI: https://doi.org/10.1007/s11356-015-4492-9

Gu, N., Gao, J., Li, H., Wu, Y., Ma, Y., & Wang, K. - Montmorillonite-supported with Cu2O nanoparticles for damage and removal of Microcystis aeruginosa under visible light, Applied Clay Science 132 (2016), 79-89. DOI: https://doi.org/10.1016/j.clay.2016.05.017

Kotai, J. - Instructions for preparation of modified nutrient solution Z8 for algae. Norwegian Institute for Water Research, Oslo B-11/69 (1972), 1-5.

Laughinghouse IV, H. D., Lefler, F. W., Berthold, D. E., & Bishop, W. M. - Sorption of dissolved microcystin using lanthanum-modified bentonite clay, Journal of Aquatic Plant Management 58 (2020), 72-75.

Mohamed, Z. A., Hashem, M., & Alamri, S. A. - Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride, Toxicon 86 (2014), 1-58. DOI: https://doi.org/10.1016/j.toxicon.2014.05.008

Moreira, C., Martins, J., Vasconcelos, V., Antunes, A. - Genomics perspectives on cyanobacteria research. In Handbook of Algal Science, Technology and Medicine, Academic Press, (2020) pp. 147-159.. DOI: https://doi.org/10.1016/B978-0-12-818305-2.00009-7

Peng, Y., Zhang, Z., Wang, M., Shi, X., Zhou, Y., Zhou, Y., Kong, Y. - Inactivation of harmful Anabaena flos-aquae by ultrasound irradiation: Cell disruption mechanism and enhanced coagulation, Ultrasonics Sonochemistry 69 (2020), 105254. DOI: https://doi.org/10.1016/j.ultsonch.2020.105254

Pinho, L. X., Azevedo, J., Brito, Â., Santos, A., Tamagnini, P., Vilar, V. J., Boaventura, R. A. - Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin, Chemical Engineering Journal 268(2015), 144-152 DOI: https://doi.org/10.1016/j.cej.2014.12.111

Qian, T., Li, J., & Deng, Y. - Pore structure modified diatomite-supported PEG composites for thermal energy storage, Scientific Reports 6 (2016), 32392. DOI: https://doi.org/10.1038/srep32392

Ribeiro, F., Gallego-Urrea, J. A., Jurkschat, K., Crossley, A., Hassellöv, M., Taylor, C., Soares A. M V M, Loureiro, S. - Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Science of the Total Environment 466(2014), 232-241. DOI: https://doi.org/10.1016/j.scitotenv.2013.06.101

Shen, X., Zhang, H., He, X., Shi, H., Stephan, C., Jiang, H., Eichholz, T. - Evaluating the treatment effectiveness of copper-based algaecides on toxic algae Microcystis aeruginosa using single cell-inductively coupled plasma-mass spectrometry, Analytical and Bioanalytical hemistry 411(21) (2019), 5531-5543. DOI: https://doi.org/10.1007/s00216-019-01933-9

Tang, Y., Xin, H., Yang, S., Guo, M., Malkoske, T., Yin, D., Xia, S. - Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: toxic effects and environmental feedback, Aquatic Toxicology 204(2018), 19-26. DOI: https://doi.org/10.1016/j.aquatox.2018.08.010

Wang, L., Wu, C., Ni, M., Guo, H., Liang, G., & Xiong, R. - Influencing factors of Microcystis aeruginosa removal by enhanced coagulation with diatomite, China Environmental Science 34(1) (2014), 156-160.

Xu, Z., Gao, G., Tu, B., Qiao, H., Ge, H., & Wu, H. - Physiological response of the toxic and non-toxic strains of a bloom-forming cyanobacterium Microcystis aeruginosa to changing ultraviolet radiation regimes, Hydrobiologia 833(1) (2019), 143-156. DOI: https://doi.org/10.1007/s10750-019-3896-9

Zhang, B., Jiang, D., Guo, X., He, Y., Ong, C. N., Xu, Y., & Pal, A. - Removal of Microcystis aeruginosa using nano-Fe3O4 particles as a coagulant aid, Environmental Science and Pollution Research 22(23) (2015), 18731-18740. DOI: https://doi.org/10.1007/s11356-015-5053-y

Zhao, C. S., Shao, N. F., Yang, S. T., Ren, H., Ge, Y. R., Feng, P., Zhao, Y. - Predicting cyanobacteria bloom occurrence in lakes and reservoirs before blooms occur, Science of the Total Environment 670(2019), 837-848. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.161

Zhou, S., Shao, Y., Gao, N., Zhu, S., Li, L., Deng, J., & Zhu, M. - Removal of Microcystis aeruginosa by potassium ferrate (VI): Impacts on cells integrity, intracellular organic matter release and disinfection by-products formation, Chemical Engineering Journal 251(2014), 304-309. DOI: https://doi.org/10.1016/j.cej.2014.04.081

Downloads

Published

29-12-2021

How to Cite

[1]
T. N. Dinh, T. T. N. Dang, D. T. Phan, T. L. Pham, T. H. Y. Tran, and Q. H. nguyen, “Capability of Cu<sub>2</sub>ONPs/diatomite material in growth inhibition and removal of <i>Microcystis aeruginosa</i> in aquacultute cultivation”, Vietnam J. Sci. Technol., vol. 59, no. 6, pp. 762–771, Dec. 2021.

Issue

Section

Environment