Potential inhibitory activities of phytoconstituents in Salvia miltiorrhiza against coronary heart disease drug targets using docking and ADMET studies

Man Thi Thuy Duong, Nguyen Ngoc Long, Pham Hai Son, Tran Thi Hoai Van, Long Giang Bach, Pham Quoc Long, Ha Viet Hai, Do Tien Lam, Pham Thi Hong Minh, Le Thi Thuy Huong
Author affiliations

Authors

  • Man Thi Thuy Duong Faculty of Biology, VNU University of Science, Vietnam National University, 2 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Ngoc Long Faculty of Chemistry and Environment, Thuy Loi University, Ha Noi, Viet Nam
  • Pham Hai Son Hanoi University of Business and Technology, 29/124 Vinh Tuy, Hai Ba Trung, Ha Noi, Viet Nam
  • Tran Thi Hoai Van Vietnam University of Traditional Medicine, 2 Tran Phu, Ha Dong, Ha Noi, Viet Nam
  • Long Giang Bach NTT Hi‑Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
  • Pham Quoc Long Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Ha Viet Hai Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Do Tien Lam Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Pham Thi Hong Minh Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Le Thi Thuy Huong Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18215

Keywords:

Coronary heart disease, Salvia miltiorrhiza, molecular docking, ADMET

Abstract

Coronary heart disease (CHD) is one of the leading causes of death worldwide. The effectiveness of the current drugs is still restricted due to high side effects; thus, it is urgently needed to discover novel compounds for drug development. In the field of drug discovery research, the main target receptors for chemotherapy are identified as ACE, PPAR-γ, HMGR, COX-2, and thrombin. In this study, docking simulations were performed for phytoconstituents of Salvia miltiorrhiza Bunge in searching for compounds with potential inhibitory activities against these proteins. As a result, six compounds were suggested as potential multitarget inhibitors and could be considered for further drug development studies based on docking conformation and ADMET property analysis.

Downloads

Download data is not yet available.

References

Gaziano T. A., Bitton A., Anand S., Abrahams-Gessel S., and Murphy A. - Growing Epidemic of Coronary Heart Disease in Low- and Middle-Income Countries, Curr. Probl. Cardiol. 35 (2) (2010) 72-115. https://doi.org/10.1016/j.cpcardiol.2009.10.002.

Sanchis-Gomar F., Perez-Quilis C., Leischik R., and Lucia A. - Epidemiology of coronary heart disease and acute coronary syndrome, Ann. Transl. Med. 4 (13) (2016) 256-256. https://doi.org/10.21037/atm.2016.06.33.

Kandaswamy E. and Zuo L. - Recent Advances in Treatment of Coronary Artery Disease: Role of Science and Technology, Int. J. Mol. Sci. 19 (2) (2018) 424. https://doi.org/ 10.3390/ijms19020424.

Elisaf M. - The Treatment of Coronary Heart Disease: An Update, Curr. Med. Res. Opin. 17 (1) (2008) 18-26. https://doi.org/10.1185/0300799039117021.

Le D., Brown L., Malik K., and Murakami S. - Two Opposing Functions of Angiotensin-Converting Enzyme (ACE) That Links Hypertension, Dementia, and Aging, Int. J. Mol. Sci. 22 (24) (2021) 13178. https://doi.org/10.3390/ijms222413178.

Acharya K. R., Sturrock E. D., Riordan J. F., and Ehlers M. R. W. - Ace revisited: A new target for structure-based drug design, Nat. Rev. Drug Discov. 2 (11) (2003) 891-902. https://doi.org/10.1038/nrd1227.

Robbins G. T. - PPAR gamma, bioactive lipids, and cancer progression, Front. Biosci. 17 (1) (2012) 1816–1834. https://doi.org/10.2741/4021.

Semple R. K. - PPAR and human metabolic disease, J. Clin. Invest. 116 (3) (2006) 581-589. https://doi.org/10.1172/jci28003.

Ojha S., Islam B., Charu C., Adem A., and Aburawi E. - Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking, Drug Des. Devel. Ther. (2015). https://doi.org/10.2147/dddt.S86705.

Chan P. C., Liao M. T., and Hsieh P. S. - The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance, Int. J. Mol. Sci. 20 (13) (2019) 3115. https://doi.org/10.3390/ijms20133115.

Zarghi A. and Arfaei S. - Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships, Iran J. Pharm. Res. 10 (4) (2011) 655-683.

Di Cera E. - Thrombin, Mol. Aspects Med. 29 (4) (2008) 203-254. https://doi.org/10.1016/j.mam.2008.01.001.

Wang L., Ma R., Liu C., Liu H., Zhu R., Guo S., Tang M., Li Y., Niu J., Fu M., Gao S., and Zhang D. - Salvia miltiorrhiza: A Potential Red Light to the Development of Cardiovascular Diseases, Curr. Pharm. Des. 23 (7) (2017) 1077-1097. https://doi.org/10.2174/1381612822666161010105242.

Kang D. G., Oh H., Sohn E. J., Hur T. Y., Lee K. C., Kim K. J., Kim T. Y., and Lee H. S. - Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats, Life Sci. 75 (15) (2004) 1801-1816. https://doi.org/ 10.1016/j.lfs.2004.02.034.

Sun Y., Zhu H., Wang J., Liu Z., and Bi J. - Isolation and purification of salvianolic acid A and salvianolic acid B from Salvia miltiorrhiza by high-speed counter-current chromatography and comparison of their antioxidant activity, J. Chromatogr. B 877 (8-9) (2009) 733-737. https://doi.org/10.1016/j.jchromb.2009.02.013.

Su C. Y., Ming Q. L., Rahman K., Han T., and Qin L. P. - Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology, Chin. J. Nat. Med. 13 (3) (2015) 163-182. https://doi.org/10.1016/s1875-5364(15)30002-9.

Honda G., Koezuka Y., and Tabata M. - Isolation of an antidermatophytic substance from the root of Salvia miltiorrhiza, Chem. Pharm. Bull. (Tokyo) 36 (1) (1988) 408-411. https://doi.org/10.1248/cpb.36.408.

Lu P., Nwafor E., Li J., Zhang Q., Qi D., Liu Z., Peng H., Qin H., Gao Y., and Wang J. - Traditional Chinese medicine of Salvia miltiorrhiza Bunge: a review of phytochemistry, pharmacology and pharmacokinetics, Tradit. Med. Res. 6 (4) (2021) 35. https://doi.org/ 10.53388/tmr20201027204.

The PyMOL Molecular Graphics System, Version 2.4.0, Schrodinger, LLC.

Allouche A. R. - Gabedit-A graphical user interface for computational chemistry softwares, J. Comput. Chem. 32 (1) (2011) 174-182. https://doi.org/10.1002/jcc.21600.

Natesh R., Schwager S. L. U., Evans H. R., Sturrock E. D., and Acharya K. R. - Structural Details on the Binding of Antihypertensive Drugs Captopril and Enalaprilat to Human Testicular Angiotensin I-Converting Enzyme, Biochemistry 43 (27) (2004) 8718-8724. https://doi.org/10.1021/bi049480n.

Hopkins C. R., O’Neil S. V., Laufersweiler M. C., Wang Y., Pokross M., Mekel M., Evdokimov A., Walter R., Kontoyianni M., Petrey M. E., Sabatakos G., Roesgen J. T., Richardson E. and Demuth T. P. - Design and synthesis of novel N-sulfonyl-2-indole carboxamides as potent PPAR-γ binding agents with potential application to the treatment of osteoporosis, Bioorg. Med. Chem. Lett. 16 (21) (2006) 5659-5663. https://doi.org/ 10.1016/j.bmcl.2006.08.003.

Istvan E. S. and Deisenhofer J. - Structural Mechanism for Statin Inhibition of HMG-CoA Reductase, Science 292 (5519) (2001) 1160-1164. https://doi.org/10.1126/ science.1059344.

Kurumbail R. G., Stevens A. M., Gierse J. K., McDonald J. J., Stegeman R. A., Pak J. Y., Gildehaus D., iyashiro J. M., Penning T. D., Seibert K., Isakson P. C., and Stallings W. C. - Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents, Nature 384 (6610) (1996) 644-648. https://doi.org/10.1038/384644a0.

Fokkens J. and Klebe G. - A Simple Protocol To Estimate Differences in Protein Binding Affinity for Enantiomers without Prior Resolution of Racemates, Angew. Chem., Int. Ed. Engl. 45 (6) (2006) 985-989. https://doi.org/10.1002/anie.200502302.

Le T. T. H., Tran L. H., Nguyen M. T., Pham M. Q., and Phung H. T. T. - Calculation of binding affinity of JAK1 inhibitors via accurately computational estimation, J. Biomol. Struct. Dyn. (2022) 1-11. https://doi.org/10.1080/07391102.2022.2118830.

Nguyen N. T., Nguyen T. H., Pham T. N. H., Huy N. T., Bay M. V., Pham M. Q., Nam P. C., Vu V. V., and Ngo S. T. - Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity, J. Chem. Inf. Model. 60 (1) (2019) 204-211. https://doi.org/10.1021/acs.jcim.9b00778.

Falé P. L. V., Araújo M. E. M., Ascensão L. and Serralheiro M. L. M. - Acetylcholinesterase inhibition by Rosmarinic acid from Plectranthus (Lamiaceae) species, Planta Med. 74 (09) (2008) 74-88. https://doi.org/10.1055/s-0028-1084086.

Liao Y., Hu X., Pan J. and Zhang G. - Inhibitory Mechanism of Baicalein on Acetylcholinesterase: Inhibitory Interaction, Conformational Change, and Computational Simulation, Foods 11 (2) (2022). https://doi.org/10.3390/foods11020168.

Liu X., Gao Z. G., Wu Y., Stevens R. C., Jacobson K. A., and Zhao S. - Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y1 and P2Y12 receptors, Sci. Rep. 8 (1) (2018) 8084. https://doi.org/10.1038/s41598-018-26577-0.

Downloads

Published

01-03-2024

How to Cite

[1]
M. Thi Thuy Duong, “Potential inhibitory activities of phytoconstituents in Salvia miltiorrhiza against coronary heart disease drug targets using docking and ADMET studies”, Vietnam J. Sci. Technol., vol. 62, no. 4, pp. 648–659, Mar. 2024.

Issue

Section

Natural Products

Most read articles by the same author(s)

<< < 1 2