Multicomponent reaction for the synthesis of novel fluorinated 2-amino-4H-benzo[g]chromene-5,10-dione-3-carbonitriles
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/17497Keywords:
2-Amino-3-cyano-chromene, fluorine heterocyclic molecule, 1,4-diazabicyclo[2.2.2]octane, multicomponent domino reaction, 2-hydroxy-1,4-naphthoquinoneAbstract
Chromene is a significant class of heterocyclic compounds prossessing a simple structure as well as important biological activities. Many studies have been done to find new approaches for the preparation of chromene derivatives. Notably, the introduction of fluorine into heterocyclic molecules resulted in a significant improvement of their biological activities. In this study, a simple, straightforward, and highly efficient microwave-assisted three-component synthesis of novel 2-amino-4H-benzo[g]chromene-5,10-dione-3-carbonitrile derivatives bearing fluorine atoms has been developed using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an eco-friendly catalyst, and acetonitrile as a solvent. Starting from 2-hydroxy-1,4-dihydronaphthalene-1,4-dione, malononitrile, and fluorinated aromatic aldehyde, 2-amino-4H-benzo[g]chromene-5,10-dione-3-carbonitrile derivatives have been afforded in good yields (71 – 76 %). The plausible reaction mechanism was described. Products were synthesized through a sequential Knoevenagel condensation, Michael addition, intramolecular cyclization, and [1,3]-hydrogen shift step. The structure of products was completely elucidated by 1H NMR, 13C NMR, and mass spectra. The particularly valuable feature of this process is mild reaction conditions, short reaction times, and good yields.
Downloads
References
Nahar L., Talukdar A. D., Nath D., Nath S., Mehan A., Ismail F. M. D., Sarker S. D. - Naturally occurring calanolides: Occurrence, biosynthesis, and pharmacological properties including iherapeutic potential, Molecules 25 (2020) 4983. https://doi.org/10.3390/ molecules25214983. DOI: https://doi.org/10.3390/molecules25214983
Xu Z. Q., Kern E. R., Westbrook L., Allen L. B., Buckheit R. W., Tseng C. K.-H., Jenta T. Flavin - Plant-derived and semi-synthetic calanolide compounds with in vitro activity against both human immunodeficiency virus type 1 and human cytomegalovirus. Antivir, Chem. Chemother. 11 (2000) 23–29. https://doi.org/10.1177/095632020001100102. DOI: https://doi.org/10.1177/095632020001100102
Nguyen V. L., Truong C. T., Nguyen B. C. Q., Vo T. N. V., Dao T. T., Nguyen V. D., Trinh D. T. T., Huynh H. K., Bui C. B. - Anti-inflammatory and wound healing activities of calophyllolide isolated from Calophyllum inophyllum Linn, PLOS One 12 (2017) e0185674. https://doi.org/10.1371/journal.pone.0185674. DOI: https://doi.org/10.1371/journal.pone.0185674
Thomas N., Zachariah S. M., Ramani P. - 4-Aryl-4 H -chromene-3-carbonitrile derivates: synthesis and preliminary anti-breast cancer studies: 4-aryl-4 H –chromene, J. Heterocycl. Chem. 53 (2016) 1778-1782. https://doi.org/10.1002/jhet.2483. DOI: https://doi.org/10.1002/jhet.2483
Wu J. Y. C., Fong W. F., Zhang J. X., Leung C. H., Kwong H. L., Yang M. S., Li D., Cheung H. Y. - Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani, Eur. J. Pharmacol. 473 (2003) 9-17. https://doi.org/10.1016/S0014-2999(03)01946-0. DOI: https://doi.org/10.1016/S0014-2999(03)01946-0
Rueping M., Sugiono E., Merino E. - Asymmetric organocatalysis: an efficient enantioselective access to benzopyranes and chromenes, Chem. Eur. J. 14 (2008) 6329-6332. https://doi.org/10.1002/chem.200800836. DOI: https://doi.org/10.1002/chem.200800836
Flavin M. T., Rizzo J. D., Khilevich A., Kucherenko A., Sheinkman A. K., Vilaychack V., Lin L., Chen W., Greenwood E. M., Pengsuparp T., Pezzuto J. M., Hughes S. H., Flavin T. M., Cibulski M., Boulanger W. A., Shone R. L., Xu Z.-Q. - Synthesis, chromatographic resolution, and anti-human hmmunodeficiency virus activity of (±)-calanolide A and its enantiomers, J. Med. Chem. 39 (1996) 1303-1313. https://doi.org/10.1021/jm950797i. DOI: https://doi.org/10.1021/jm950797i
Fadda A. A., Berghot M. A., Amer F. A., Badawy D. S., Bayoumy N. M. - Synthesis and antioxidant and antitumor activity of novel pyridine, chromene, thiophene and thiazole derivatives. Arch. Pharm. Chem. Life Sci. 345 (2012) 378–385. https://doi.org/10.1002/ardp.201100335. DOI: https://doi.org/10.1002/ardp.201100335
El-Agrody A. M., Halawa A. H., Fouda A. M., Al-Dies A. A. M. - The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions, J. Saudi Chem. Soc. 21 (2017) 82-90. https://doi.org/10.1016/ j.jscs.2016.03.002. DOI: https://doi.org/10.1016/j.jscs.2016.03.002
Zghab I., Trimeche B., Mansour M. B., Hassine M., Touboul D., Jannet H. B. - Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives, Arab. J. Chem. 10 (2017) S2651-S2658. https://doi.org/10.1016/j.arabjc.2013.10.008. DOI: https://doi.org/10.1016/j.arabjc.2013.10.008
de Andrade-Neto V. F., Goulart M. O. F., da Silva Filho J. F., da Silva M. J., Pinto M. do C. F. R., Pinto A. V., Zalis M. G., Carvalho L. H., Krettli A. U. - Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo, Bioorg. Med. Chem. Lett. 14 (2004) 1145-1149. https://doi.org/10.1016/j.bmcl.2003.12.069. DOI: https://doi.org/10.1016/j.bmcl.2003.12.069
Pérez-Sacau E., Estévez-Braun A., Ravelo Á. G., Gutiérrez Yapu D., Giménez Turba A. - Antiplasmodial activity of naphthoquinones related to lapachol and β –lapachone, Chem. Biodivers. 2 (2005) 264–274. https://doi.org/10.1002/cbdv.200590009. DOI: https://doi.org/10.1002/cbdv.200590009
Patil S. A., Patil R., Pfeffer L. M., Miller D. D. - Chromenes: potential new chemotherapeutic agents for cancer, Future Med. Chem. 5 (2013) 1647-1660. https://doi.org/ 10.4155/fmc.13.126. DOI: https://doi.org/10.4155/fmc.13.126
Panda D., Singh J. P., Wilson L. - Suppression of microtubule dynamics by LY290181, J. Biol. Chem. 272 (1997) 7681-7687. https://doi.org/10.1074/ jbc.272.12.7681. DOI: https://doi.org/10.1074/jbc.272.12.7681
Wood D. L., Panda D., Wiernicki T. R., Wilson L., Jordan M. A. - Singh J. P. Inhibition of mitosis and microtubule function through direct tubulin binding by a novel antiproliferative naphthopyran LY290181, Mol. Pharmacol. 52 (1997) 437. https://doi.org/10.1124/mol.52.3.437. DOI: https://doi.org/10.1124/mol.52.3.437
Wiener C., Schroeder C. H., West B. D., Link K. P. - Studies on the 4-hydroxycoumarins. XVIII.1a 3-[α-(Acetamidomethyl)benzyl]-4-hydroxycoumarin and related products1b, J. Org. Chem. 27 (1962) 3086-3088. https://doi.org/10.1021/jo01056a024. DOI: https://doi.org/10.1021/jo01056a024
Al Nasr I. S., Jentzsch J., Shaikh A., Singh Shuveksh P., Koko W. S., Khan T. A., Ahmed K., Schobert R., Ersfeld K., Biersack B. - New pyrano‐4H‐benzo[g]chromene‐5,10‐diones with antiparasitic and antioxidant activities, Chem. Biodivers. 18 (2021). https://doi.org/ 10.1002/cbdv.202000839. DOI: https://doi.org/10.1002/cbdv.202000839
Magedov I. V., Kireev A. S., Jenkins A. R., Evdokimov N. M., Lima D. T., Tongwa P., Altig J., A. Steelant W. F., Van slambrouck S., Antipin M. Yu., Kornienko A. - Structural simplification of bioactive natural products with multicomponent synthesis. 4. 4H-Pyrano-[2,3-b]naphthoquinones with anticancer activity, Bioorg. Med. Chem. Lett. 22 (2012) 5195-5198. https://doi.org/10.1016/j.bmcl.2012.06.073. DOI: https://doi.org/10.1016/j.bmcl.2012.06.073
Khan A. T., Lal M., Ali S., Khan Md. M. - One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst, Tetrahedron Lett. 52 (2011) 5327–5332. https://doi.org/10.1016/j.tetlet.2011.08.019. DOI: https://doi.org/10.1016/j.tetlet.2011.08.019
Thanh N. H., Phuong H. T., Giang L. N. T., Giang N. T. Q., Ha N. T. T., Anh D. T. T., Cuong V. D., Van Tuyen N., Van Kiem P. - 4-(Dimethylamino)pyridine as an efficient catalyst for one-pot synthesis of 1,4-pyranonaphthoquinone derivatives via microwave-assisted sequential three component reaction in green solvent, Nat. Prod. Commun. 16 (2021) 1934578X2110539. https://doi.org/10.1177/1934578X211053951. DOI: https://doi.org/10.1177/1934578X211053951
Khurana J. M., Nand B., Saluja P. - DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H-benzo[g]chromenes in aqueous medium, Tetrahedron 66 (2010) 5637-5641. https://doi.org/10.1016/j.tet.2010.05.082. DOI: https://doi.org/10.1016/j.tet.2010.05.082
Shaabani A., Ghadari R., Ghasemi S., Pedarpour M., Rezayan A. H., Sarvary A., Ng S. W. - Novel one-pot three- and pseudo-five-component reactions: synthesis of functionalized benzo[g]- and dihydropyrano[2,3-g]chromene derivatives, J. Comb. Chem. 11 (2009) 956-959. https://doi.org/10.1021/cc900101w. DOI: https://doi.org/10.1021/cc900101w
Yao C., Yu C., Li T., Tu S. - An efficient synthesis of 4H-benzo[g]chromene-5,10-dione derivatives through triethylbenzylammonium chloride catalyzed multicomponent reaction under solvent-free Conditions, Chin. J. Chem. 27 (2009) 1989-1994. https://doi.org/ 10.1002/cjoc.200990334. DOI: https://doi.org/10.1002/cjoc.200990334
Brahmachari G., Banerjee B. - Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst, ACS Sustai. Chem. Eng. 2 (2014) 411-422. https://doi.org/10.1021/ sc400312n. DOI: https://doi.org/10.1021/sc400312n
Wang X. H., Zhang X. H., Tu S. J., Shi F., Zou X., Yan S., Han Z. G., Hao W. J., Cao X. D., Wu S.-S. - A facile route to the synthesis of 1,4-pyranonaphthoquinone derivatives under microwave irradiation without catalyst, J. Heterocycl. Chem. 46 (2009) 832-836. https://doi.org/10.1002/jhet.153. DOI: https://doi.org/10.1002/jhet.153
Abid O. R., Khalid M., Hussain M. T., Hanif M., Qadeer G., Rama N. H., Kornienko A., Khan K. M. - Synthesis and anti-cancer, anti-metastatic evaluation of some new fluorinated isocoumarins and 3,4-dihydroisocoumarins, J. Fluor. Chem. 135 (2012) 240-245. https://doi.org/10.1016/j.jfluchem.2011.11.011. DOI: https://doi.org/10.1016/j.jfluchem.2011.11.011
Zhang S., Luo Y., He L. Q., Liu Z. J., Jiang A. Q., Yang Y. H., Zhu H. L. - Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity, Bioorg. Med. Chem. 21 (2013) 3723-3729. https://doi.org/10.1016/j.bmc.2013.04.043. DOI: https://doi.org/10.1016/j.bmc.2013.04.043
Parker E. N., Song J., Kishore Kumar G. D., Odutola S. O., Chavarria G. E., Charlton-Sevcik A. K., Strecker T. E., Barnes A. L., Sudhan D. R., Wittenborn T. R., Siemann D. W., Horsman M. R., Chaplin D. J., Trawick M. L., Pinney K. G. - Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L., Bioorg. Med. Chem. 23 (2015) 6974-6992. https://doi.org/10.1016/j.bmc.2015.09.036. DOI: https://doi.org/10.1016/j.bmc.2015.09.036
Isanbor C., O’Hagan D. - Fluorine in medicinal chemistry: A review of anti-cancer agents, J. Fluor. Chem. 127 (2006) 303-319. https://doi.org/10.1016/j.jfluchem.2006.01.011. DOI: https://doi.org/10.1016/j.jfluchem.2006.01.011
Inoue M., Sumii Y., Shibata N. - Contribution of organofluorine compounds to pharmaceuticals, ACS Omega 5 (2020) 10633-10640. https://doi.org/10.1021/acsomega. 0c00830. DOI: https://doi.org/10.1021/acsomega.0c00830
Hagmann W. K. - The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51 (2008) 4359-4369. https://doi.org/10.1021/jm800219f. DOI: https://doi.org/10.1021/jm800219f
Wang J., Sánchez-Roselló M., Aceña J. L., del Pozo C., Sorochinsky A. E., Fustero S., Soloshonok V. A., Liu H. - Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011), Chem. Rev. 114 (2014) 2432-2506. https://doi.org/10.1021/cr4002879. DOI: https://doi.org/10.1021/cr4002879
Thi T. P., Decuyper L., Quang T. L., The C. P., Dang Thi T. A., Nguyen H. T., Le Nhat T. G., Thanh T. N., Thi P. H., D’hooghe M., Van Nguyen T. - Synthesis and cytotoxic evaluation of novel indenoisoquinoline-propan-2-ol hybrids, Tetrahedron Lett. 57 (2016) 466-471. https://doi.org/10.1016/j.tetlet.2015.12.045. DOI: https://doi.org/10.1016/j.tetlet.2015.12.045
Dang Thi T. A., Kim Tuyet N. T., Pham The C., Thanh Nguyen H., Ba Thi C., Doan Duy T., D’hooghe M., Van Nguyen T. - Synthesis and cytotoxic evaluation of novel ester-triazole-linked triterpenoid–AZT conjugates, Bioorg. Med. Chem. Lett. 24 (2014) 5190-5194. https://doi.org/10.1016/j.bmcl.2014.09.079. DOI: https://doi.org/10.1016/j.bmcl.2014.09.079
Dang Thi T. A., Decuyper L., Thi Phuong H., Vu Ngoc D., Thanh Nguyen H., Thanh Nguyen T., Do Huy T., Huy Nguyen H., D’hooghe M., Van Nguyen T. - Synthesis and cytotoxic evaluation of novel dihydrobenzo[h]cinnoline-5,6-diones, Tetrahedron Lett. 56 (2015) 5855-5858. https://doi.org/10.1016/j.tetlet.2015.08.084. DOI: https://doi.org/10.1016/j.tetlet.2015.08.084
Nguyen Thi Q. G., Le-Nhat-Thuy G., Dang Thi T. A., Hoang Thi P., Nguyen Tuan A., Nguyen Thi T. H., Nguyen T. T., Nguyen Ha T., Hoang Mai H., Nguyen T. V. - Synthesis of novel potent cytotoxicy podophyllotoxin-naphthoquinone compounds via microwave-assited multicomponent domino reactions, Bioorg. Med. Chem. Lett. 37 (2021) 127841. https://doi.org/10.1016/j.bmcl.2021.127841. DOI: https://doi.org/10.1016/j.bmcl.2021.127841
Nguyen H. T., Nguyen Thi Q. G., Nguyen Thi T. H., Thi P. H., Le-Nhat-Thuy G., Dang Thi T. A., Le-Quang B., Pham-The H., Van Nguyen T. - Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds, RSC Adv. 12 (2022) 22004-22019. https://doi.org/10.1039/D2RA03312G. DOI: https://doi.org/10.1039/D2RA03312G
Nguyen H. T., Le-Nhat-Thuy G., Thi P. H., Thi Q. G. N., Nguyen T. A., Thi T. H. N., Thi T. A. D., Nguyen T. V. - Microwave-assisted three-component synthesis of novel N-arylated-dihydrobenzo[g]quinoline-5,10-diones and their potential cytotoxic activity, Chem. Biodivers. 19 (2022) e202200359. https://doi.org/10.1002/cbdv.202200359. DOI: https://doi.org/10.1002/cbdv.202200359
Nguyen H. T., Dang Thi T. A., Hoang Thi P., Le-Nhat-Thuy G., Nguyen Thi Q. G., Nguyen Tuan A., Le Thi T. A., Van Nguyen T. - A new approach for the synthesis of novel naphthoquinone chalcone hybrid compounds, Tetrahedron Lett. 81 (2021) 153337. https://doi.org/10.1016/j.tetlet.2021.153337. DOI: https://doi.org/10.1016/j.tetlet.2021.153337
Le-Nhat-Thuy G., Dang Thi T. A., Hoang Thi P., Nguyen Thi Q. G., Nguyen H. T., Vu Ngoc D., Nguyen T. A., Van Nguyen T. - Multicomponent synthesis of novel 3-benzoyl-4H-benzo[g]chromene-5,10-dione derivatives, Tetrahedron Lett. 75 (2021) 153215. https://doi.org/10.1016/j.tetlet.2021.153215. DOI: https://doi.org/10.1016/j.tetlet.2021.153215
Le-Nhat-Thuy G., Dang Thi T. A., Nguyen Thi Q. G., Hoang Thi P., Nguyen T. A., Nguyen H. T., Nguyen Thi T. H., Nguyen H. S., Nguyen T. V. - Synthesis and biological evaluation of novel benzo[a]pyridazino[3,4-c]phenazine derivatives, Bioorg. Med. Chem. Lett. 43 (2021) 128054. https://doi.org/10.1016/j.bmcl.2021.128054. DOI: https://doi.org/10.1016/j.bmcl.2021.128054
Baghernejad B. - 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis, Eur. J. Chem. 1 (2010) 54-60. https://doi.org/10.5155/eurjchem.1.1.54-60.2. DOI: https://doi.org/10.5155/eurjchem.1.1.54-60.2
Balalaie S., Ramezanpour S., Bararjanian M., Gross J. H. - DABCO‐catalyzed efficient synthesis of naphthopyran derivatives via one‐pot three‐component condensation reaction at room temperature. Synth. Commun. 38 (2008) 1078-1089. https://doi.org/ 10.1080/00397910701862865. DOI: https://doi.org/10.1080/00397910701862865
Tahmassebi D., Bryson J. A., Binz S. I. - 1,4-Diazabicyclo[2.2.2]octane as an efficient catalyst for a clean, one-pot synthesis of tetrahydrobenzo[b]pyran derivatives via multicomponent reaction in aqueous media, Synth. Commun. 41 (2011) 2701-2711. https://doi.org/10.1080/00397911.2010.515345. DOI: https://doi.org/10.1080/00397911.2010.515345
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.