Multicomponent reaction for the synthesis of novel fluorinated 2-amino-4H-benzo[g]chromene-5,10-dione-3-carbonitriles

Nguyen Ha Thanh, Hoang Thi Phuong, Le Nhat Thuy Giang, Nguyen Thi Quynh Giang, Nguyen Tuan Anh, Dang Thi Tuyet Anh, Nguyen Van Tuyen
Author affiliations

Authors

  • Nguyen Ha Thanh Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Hoang Thi Phuong Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Le Nhat Thuy Giang Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Quynh Giang Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Tuan Anh Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Dang Thi Tuyet Anh Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Van Tuyen Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17497

Keywords:

2-Amino-3-cyano-chromene, fluorine heterocyclic molecule, 1,4-diazabicyclo[2.2.2]octane, multicomponent domino reaction, 2-hydroxy-1,4-naphthoquinone

Abstract

Chromene is a significant class of heterocyclic compounds prossessing a simple structure as well as important biological activities. Many studies have been done to find new approaches for the preparation of chromene derivatives. Notably, the introduction of fluorine into heterocyclic molecules resulted in a significant improvement of their biological activities. In this study, a simple, straightforward, and highly efficient microwave-assisted three-component synthesis of novel 2-amino-4H-benzo[g]chromene-5,10-dione-3-carbonitrile derivatives bearing fluorine atoms has been developed using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an eco-friendly catalyst, and acetonitrile as a solvent. Starting from 2-hydroxy-1,4-dihydronaphthalene-1,4-dione, malononitrile, and fluorinated aromatic aldehyde, 2-amino-4H-benzo[g]chromene-5,10-dione-3-carbonitrile derivatives have been afforded in good yields (71 – 76 %). The plausible reaction mechanism was described. Products were synthesized through a sequential Knoevenagel condensation, Michael addition, intramolecular cyclization, and [1,3]-hydrogen shift step. The structure of products was completely elucidated  by 1H NMR, 13C NMR, and mass spectra. The particularly valuable feature of this process is mild reaction conditions, short reaction times, and good yields.

Downloads

Download data is not yet available.

References

Nahar L., Talukdar A. D., Nath D., Nath S., Mehan A., Ismail F. M. D., Sarker S. D. - Naturally occurring calanolides: Occurrence, biosynthesis, and pharmacological properties including iherapeutic potential, Molecules 25 (2020) 4983. https://doi.org/10.3390/ molecules25214983. DOI: https://doi.org/10.3390/molecules25214983 https://doi.org/10.3390/ molecules25214983.">

Xu Z. Q., Kern E. R., Westbrook L., Allen L. B., Buckheit R. W., Tseng C. K.-H., Jenta T. Flavin - Plant-derived and semi-synthetic calanolide compounds with in vitro activity against both human immunodeficiency virus type 1 and human cytomegalovirus. Antivir, Chem. Chemother. 11 (2000) 23–29. https://doi.org/10.1177/095632020001100102. DOI: https://doi.org/10.1177/095632020001100102 https://doi.org/10.1177/095632020001100102.">

Nguyen V. L., Truong C. T., Nguyen B. C. Q., Vo T. N. V., Dao T. T., Nguyen V. D., Trinh D. T. T., Huynh H. K., Bui C. B. - Anti-inflammatory and wound healing activities of calophyllolide isolated from Calophyllum inophyllum Linn, PLOS One 12 (2017) e0185674. https://doi.org/10.1371/journal.pone.0185674. DOI: https://doi.org/10.1371/journal.pone.0185674 https://doi.org/10.1371/journal.pone.0185674.">

Thomas N., Zachariah S. M., Ramani P. - 4-Aryl-4 H -chromene-3-carbonitrile derivates: synthesis and preliminary anti-breast cancer studies: 4-aryl-4 H –chromene, J. Heterocycl. Chem. 53 (2016) 1778-1782. https://doi.org/10.1002/jhet.2483. DOI: https://doi.org/10.1002/jhet.2483 https://doi.org/10.1002/jhet.2483.">

Wu J. Y. C., Fong W. F., Zhang J. X., Leung C. H., Kwong H. L., Yang M. S., Li D., Cheung H. Y. - Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani, Eur. J. Pharmacol. 473 (2003) 9-17. https://doi.org/10.1016/S0014-2999(03)01946-0. DOI: https://doi.org/10.1016/S0014-2999(03)01946-0 https://doi.org/10.1016/S0014-2999(03)01946-0.">

Rueping M., Sugiono E., Merino E. - Asymmetric organocatalysis: an efficient enantioselective access to benzopyranes and chromenes, Chem. Eur. J. 14 (2008) 6329-6332. https://doi.org/10.1002/chem.200800836. DOI: https://doi.org/10.1002/chem.200800836 https://doi.org/10.1002/chem.200800836.">

Flavin M. T., Rizzo J. D., Khilevich A., Kucherenko A., Sheinkman A. K., Vilaychack V., Lin L., Chen W., Greenwood E. M., Pengsuparp T., Pezzuto J. M., Hughes S. H., Flavin T. M., Cibulski M., Boulanger W. A., Shone R. L., Xu Z.-Q. - Synthesis, chromatographic resolution, and anti-human hmmunodeficiency virus activity of (±)-calanolide A and its enantiomers, J. Med. Chem. 39 (1996) 1303-1313. https://doi.org/10.1021/jm950797i. DOI: https://doi.org/10.1021/jm950797i https://doi.org/10.1021/jm950797i.">

Fadda A. A., Berghot M. A., Amer F. A., Badawy D. S., Bayoumy N. M. - Synthesis and antioxidant and antitumor activity of novel pyridine, chromene, thiophene and thiazole derivatives. Arch. Pharm. Chem. Life Sci. 345 (2012) 378–385. https://doi.org/10.1002/ardp.201100335. DOI: https://doi.org/10.1002/ardp.201100335 https://doi.org/10.1002/ardp.201100335.">

El-Agrody A. M., Halawa A. H., Fouda A. M., Al-Dies A. A. M. - The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions, J. Saudi Chem. Soc. 21 (2017) 82-90. https://doi.org/10.1016/ j.jscs.2016.03.002. DOI: https://doi.org/10.1016/j.jscs.2016.03.002 https://doi.org/10.1016/ j.jscs.2016.03.002.">

Zghab I., Trimeche B., Mansour M. B., Hassine M., Touboul D., Jannet H. B. - Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives, Arab. J. Chem. 10 (2017) S2651-S2658. https://doi.org/10.1016/j.arabjc.2013.10.008. DOI: https://doi.org/10.1016/j.arabjc.2013.10.008 https://doi.org/10.1016/j.arabjc.2013.10.008.">

de Andrade-Neto V. F., Goulart M. O. F., da Silva Filho J. F., da Silva M. J., Pinto M. do C. F. R., Pinto A. V., Zalis M. G., Carvalho L. H., Krettli A. U. - Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo, Bioorg. Med. Chem. Lett. 14 (2004) 1145-1149. https://doi.org/10.1016/j.bmcl.2003.12.069. DOI: https://doi.org/10.1016/j.bmcl.2003.12.069 https://doi.org/10.1016/j.bmcl.2003.12.069.">

Pérez-Sacau E., Estévez-Braun A., Ravelo Á. G., Gutiérrez Yapu D., Giménez Turba A. - Antiplasmodial activity of naphthoquinones related to lapachol and β –lapachone, Chem. Biodivers. 2 (2005) 264–274. https://doi.org/10.1002/cbdv.200590009. DOI: https://doi.org/10.1002/cbdv.200590009 https://doi.org/10.1002/cbdv.200590009.">

Patil S. A., Patil R., Pfeffer L. M., Miller D. D. - Chromenes: potential new chemotherapeutic agents for cancer, Future Med. Chem. 5 (2013) 1647-1660. https://doi.org/ 10.4155/fmc.13.126. DOI: https://doi.org/10.4155/fmc.13.126 https://doi.org/ 10.4155/fmc.13.126.">

Panda D., Singh J. P., Wilson L. - Suppression of microtubule dynamics by LY290181, J. Biol. Chem. 272 (1997) 7681-7687. https://doi.org/10.1074/ jbc.272.12.7681. DOI: https://doi.org/10.1074/jbc.272.12.7681 https://doi.org/10.1074/ jbc.272.12.7681.">

Wood D. L., Panda D., Wiernicki T. R., Wilson L., Jordan M. A. - Singh J. P. Inhibition of mitosis and microtubule function through direct tubulin binding by a novel antiproliferative naphthopyran LY290181, Mol. Pharmacol. 52 (1997) 437. https://doi.org/10.1124/mol.52.3.437. DOI: https://doi.org/10.1124/mol.52.3.437 https://doi.org/10.1124/mol.52.3.437.">

Wiener C., Schroeder C. H., West B. D., Link K. P. - Studies on the 4-hydroxycoumarins. XVIII.1a 3-[α-(Acetamidomethyl)benzyl]-4-hydroxycoumarin and related products1b, J. Org. Chem. 27 (1962) 3086-3088. https://doi.org/10.1021/jo01056a024. DOI: https://doi.org/10.1021/jo01056a024 https://doi.org/10.1021/jo01056a024.">

Al Nasr I. S., Jentzsch J., Shaikh A., Singh Shuveksh P., Koko W. S., Khan T. A., Ahmed K., Schobert R., Ersfeld K., Biersack B. - New pyrano‐4H‐benzo[g]chromene‐5,10‐diones with antiparasitic and antioxidant activities, Chem. Biodivers. 18 (2021). https://doi.org/ 10.1002/cbdv.202000839. DOI: https://doi.org/10.1002/cbdv.202000839 https://doi.org/ 10.1002/cbdv.202000839.">

Magedov I. V., Kireev A. S., Jenkins A. R., Evdokimov N. M., Lima D. T., Tongwa P., Altig J., A. Steelant W. F., Van slambrouck S., Antipin M. Yu., Kornienko A. - Structural simplification of bioactive natural products with multicomponent synthesis. 4. 4H-Pyrano-[2,3-b]naphthoquinones with anticancer activity, Bioorg. Med. Chem. Lett. 22 (2012) 5195-5198. https://doi.org/10.1016/j.bmcl.2012.06.073. DOI: https://doi.org/10.1016/j.bmcl.2012.06.073 https://doi.org/10.1016/j.bmcl.2012.06.073.">

Khan A. T., Lal M., Ali S., Khan Md. M. - One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst, Tetrahedron Lett. 52 (2011) 5327–5332. https://doi.org/10.1016/j.tetlet.2011.08.019. DOI: https://doi.org/10.1016/j.tetlet.2011.08.019 https://doi.org/10.1016/j.tetlet.2011.08.019.">

Thanh N. H., Phuong H. T., Giang L. N. T., Giang N. T. Q., Ha N. T. T., Anh D. T. T., Cuong V. D., Van Tuyen N., Van Kiem P. - 4-(Dimethylamino)pyridine as an efficient catalyst for one-pot synthesis of 1,4-pyranonaphthoquinone derivatives via microwave-assisted sequential three component reaction in green solvent, Nat. Prod. Commun. 16 (2021) 1934578X2110539. https://doi.org/10.1177/1934578X211053951. DOI: https://doi.org/10.1177/1934578X211053951 https://doi.org/10.1177/1934578X211053951.">

Khurana J. M., Nand B., Saluja P. - DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H-benzo[g]chromenes in aqueous medium, Tetrahedron 66 (2010) 5637-5641. https://doi.org/10.1016/j.tet.2010.05.082. DOI: https://doi.org/10.1016/j.tet.2010.05.082 https://doi.org/10.1016/j.tet.2010.05.082.">

Shaabani A., Ghadari R., Ghasemi S., Pedarpour M., Rezayan A. H., Sarvary A., Ng S. W. - Novel one-pot three- and pseudo-five-component reactions: synthesis of functionalized benzo[g]- and dihydropyrano[2,3-g]chromene derivatives, J. Comb. Chem. 11 (2009) 956-959. https://doi.org/10.1021/cc900101w. DOI: https://doi.org/10.1021/cc900101w https://doi.org/10.1021/cc900101w.">

Yao C., Yu C., Li T., Tu S. - An efficient synthesis of 4H-benzo[g]chromene-5,10-dione derivatives through triethylbenzylammonium chloride catalyzed multicomponent reaction under solvent-free Conditions, Chin. J. Chem. 27 (2009) 1989-1994. https://doi.org/ 10.1002/cjoc.200990334. DOI: https://doi.org/10.1002/cjoc.200990334 https://doi.org/ 10.1002/cjoc.200990334.">

Brahmachari G., Banerjee B. - Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst, ACS Sustai. Chem. Eng. 2 (2014) 411-422. https://doi.org/10.1021/ sc400312n. DOI: https://doi.org/10.1021/sc400312n https://doi.org/10.1021/ sc400312n.">

Wang X. H., Zhang X. H., Tu S. J., Shi F., Zou X., Yan S., Han Z. G., Hao W. J., Cao X. D., Wu S.-S. - A facile route to the synthesis of 1,4-pyranonaphthoquinone derivatives under microwave irradiation without catalyst, J. Heterocycl. Chem. 46 (2009) 832-836. https://doi.org/10.1002/jhet.153. DOI: https://doi.org/10.1002/jhet.153 https://doi.org/10.1002/jhet.153.">

Abid O. R., Khalid M., Hussain M. T., Hanif M., Qadeer G., Rama N. H., Kornienko A., Khan K. M. - Synthesis and anti-cancer, anti-metastatic evaluation of some new fluorinated isocoumarins and 3,4-dihydroisocoumarins, J. Fluor. Chem. 135 (2012) 240-245. https://doi.org/10.1016/j.jfluchem.2011.11.011. DOI: https://doi.org/10.1016/j.jfluchem.2011.11.011 https://doi.org/10.1016/j.jfluchem.2011.11.011.">

Zhang S., Luo Y., He L. Q., Liu Z. J., Jiang A. Q., Yang Y. H., Zhu H. L. - Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity, Bioorg. Med. Chem. 21 (2013) 3723-3729. https://doi.org/10.1016/j.bmc.2013.04.043. DOI: https://doi.org/10.1016/j.bmc.2013.04.043 https://doi.org/10.1016/j.bmc.2013.04.043.">

Parker E. N., Song J., Kishore Kumar G. D., Odutola S. O., Chavarria G. E., Charlton-Sevcik A. K., Strecker T. E., Barnes A. L., Sudhan D. R., Wittenborn T. R., Siemann D. W., Horsman M. R., Chaplin D. J., Trawick M. L., Pinney K. G. - Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L., Bioorg. Med. Chem. 23 (2015) 6974-6992. https://doi.org/10.1016/j.bmc.2015.09.036. DOI: https://doi.org/10.1016/j.bmc.2015.09.036 https://doi.org/10.1016/j.bmc.2015.09.036.">

Isanbor C., O’Hagan D. - Fluorine in medicinal chemistry: A review of anti-cancer agents, J. Fluor. Chem. 127 (2006) 303-319. https://doi.org/10.1016/j.jfluchem.2006.01.011. DOI: https://doi.org/10.1016/j.jfluchem.2006.01.011 https://doi.org/10.1016/j.jfluchem.2006.01.011.">

Inoue M., Sumii Y., Shibata N. - Contribution of organofluorine compounds to pharmaceuticals, ACS Omega 5 (2020) 10633-10640. https://doi.org/10.1021/acsomega. 0c00830. DOI: https://doi.org/10.1021/acsomega.0c00830 https://doi.org/10.1021/acsomega. 0c00830.">

Hagmann W. K. - The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51 (2008) 4359-4369. https://doi.org/10.1021/jm800219f. DOI: https://doi.org/10.1021/jm800219f https://doi.org/10.1021/jm800219f.">

Wang J., Sánchez-Roselló M., Aceña J. L., del Pozo C., Sorochinsky A. E., Fustero S., Soloshonok V. A., Liu H. - Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011), Chem. Rev. 114 (2014) 2432-2506. https://doi.org/10.1021/cr4002879. DOI: https://doi.org/10.1021/cr4002879 https://doi.org/10.1021/cr4002879.">

Thi T. P., Decuyper L., Quang T. L., The C. P., Dang Thi T. A., Nguyen H. T., Le Nhat T. G., Thanh T. N., Thi P. H., D’hooghe M., Van Nguyen T. - Synthesis and cytotoxic evaluation of novel indenoisoquinoline-propan-2-ol hybrids, Tetrahedron Lett. 57 (2016) 466-471. https://doi.org/10.1016/j.tetlet.2015.12.045. DOI: https://doi.org/10.1016/j.tetlet.2015.12.045 https://doi.org/10.1016/j.tetlet.2015.12.045.">

Dang Thi T. A., Kim Tuyet N. T., Pham The C., Thanh Nguyen H., Ba Thi C., Doan Duy T., D’hooghe M., Van Nguyen T. - Synthesis and cytotoxic evaluation of novel ester-triazole-linked triterpenoid–AZT conjugates, Bioorg. Med. Chem. Lett. 24 (2014) 5190-5194. https://doi.org/10.1016/j.bmcl.2014.09.079. DOI: https://doi.org/10.1016/j.bmcl.2014.09.079 https://doi.org/10.1016/j.bmcl.2014.09.079.">

Dang Thi T. A., Decuyper L., Thi Phuong H., Vu Ngoc D., Thanh Nguyen H., Thanh Nguyen T., Do Huy T., Huy Nguyen H., D’hooghe M., Van Nguyen T. - Synthesis and cytotoxic evaluation of novel dihydrobenzo[h]cinnoline-5,6-diones, Tetrahedron Lett. 56 (2015) 5855-5858. https://doi.org/10.1016/j.tetlet.2015.08.084. DOI: https://doi.org/10.1016/j.tetlet.2015.08.084 https://doi.org/10.1016/j.tetlet.2015.08.084.">

Nguyen Thi Q. G., Le-Nhat-Thuy G., Dang Thi T. A., Hoang Thi P., Nguyen Tuan A., Nguyen Thi T. H., Nguyen T. T., Nguyen Ha T., Hoang Mai H., Nguyen T. V. - Synthesis of novel potent cytotoxicy podophyllotoxin-naphthoquinone compounds via microwave-assited multicomponent domino reactions, Bioorg. Med. Chem. Lett. 37 (2021) 127841. https://doi.org/10.1016/j.bmcl.2021.127841. DOI: https://doi.org/10.1016/j.bmcl.2021.127841 https://doi.org/10.1016/j.bmcl.2021.127841.">

Nguyen H. T., Nguyen Thi Q. G., Nguyen Thi T. H., Thi P. H., Le-Nhat-Thuy G., Dang Thi T. A., Le-Quang B., Pham-The H., Van Nguyen T. - Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds, RSC Adv. 12 (2022) 22004-22019. https://doi.org/10.1039/D2RA03312G. DOI: https://doi.org/10.1039/D2RA03312G https://doi.org/10.1039/D2RA03312G.">

Nguyen H. T., Le-Nhat-Thuy G., Thi P. H., Thi Q. G. N., Nguyen T. A., Thi T. H. N., Thi T. A. D., Nguyen T. V. - Microwave-assisted three-component synthesis of novel N-arylated-dihydrobenzo[g]quinoline-5,10-diones and their potential cytotoxic activity, Chem. Biodivers. 19 (2022) e202200359. https://doi.org/10.1002/cbdv.202200359. DOI: https://doi.org/10.1002/cbdv.202200359 https://doi.org/10.1002/cbdv.202200359.">

Nguyen H. T., Dang Thi T. A., Hoang Thi P., Le-Nhat-Thuy G., Nguyen Thi Q. G., Nguyen Tuan A., Le Thi T. A., Van Nguyen T. - A new approach for the synthesis of novel naphthoquinone chalcone hybrid compounds, Tetrahedron Lett. 81 (2021) 153337. https://doi.org/10.1016/j.tetlet.2021.153337. DOI: https://doi.org/10.1016/j.tetlet.2021.153337 https://doi.org/10.1016/j.tetlet.2021.153337.">

Le-Nhat-Thuy G., Dang Thi T. A., Hoang Thi P., Nguyen Thi Q. G., Nguyen H. T., Vu Ngoc D., Nguyen T. A., Van Nguyen T. - Multicomponent synthesis of novel 3-benzoyl-4H-benzo[g]chromene-5,10-dione derivatives, Tetrahedron Lett. 75 (2021) 153215. https://doi.org/10.1016/j.tetlet.2021.153215. DOI: https://doi.org/10.1016/j.tetlet.2021.153215 https://doi.org/10.1016/j.tetlet.2021.153215.">

Le-Nhat-Thuy G., Dang Thi T. A., Nguyen Thi Q. G., Hoang Thi P., Nguyen T. A., Nguyen H. T., Nguyen Thi T. H., Nguyen H. S., Nguyen T. V. - Synthesis and biological evaluation of novel benzo[a]pyridazino[3,4-c]phenazine derivatives, Bioorg. Med. Chem. Lett. 43 (2021) 128054. https://doi.org/10.1016/j.bmcl.2021.128054. DOI: https://doi.org/10.1016/j.bmcl.2021.128054 https://doi.org/10.1016/j.bmcl.2021.128054.">

Baghernejad B. - 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis, Eur. J. Chem. 1 (2010) 54-60. https://doi.org/10.5155/eurjchem.1.1.54-60.2. DOI: https://doi.org/10.5155/eurjchem.1.1.54-60.2 https://doi.org/10.5155/eurjchem.1.1.54-60.2.">

Balalaie S., Ramezanpour S., Bararjanian M., Gross J. H. - DABCO‐catalyzed efficient synthesis of naphthopyran derivatives via one‐pot three‐component condensation reaction at room temperature. Synth. Commun. 38 (2008) 1078-1089. https://doi.org/ 10.1080/00397910701862865. DOI: https://doi.org/10.1080/00397910701862865 https://doi.org/ 10.1080/00397910701862865.">

Tahmassebi D., Bryson J. A., Binz S. I. - 1,4-Diazabicyclo[2.2.2]octane as an efficient catalyst for a clean, one-pot synthesis of tetrahydrobenzo[b]pyran derivatives via multicomponent reaction in aqueous media, Synth. Commun. 41 (2011) 2701-2711. https://doi.org/10.1080/00397911.2010.515345. DOI: https://doi.org/10.1080/00397911.2010.515345 https://doi.org/10.1080/00397911.2010.515345.">

Downloads

Published

15-12-2023

How to Cite

[1]
N. Ha Thanh, “Multicomponent reaction for the synthesis of novel fluorinated 2-amino-4H-benzo[g]chromene-5,10-dione-3-carbonitriles”, Vietnam J. Sci. Technol., vol. 61, no. 6, pp. 964–974, Dec. 2023.

Issue

Section

Natural Products

Most read articles by the same author(s)