A modified hard-templating for hollow mesoporous silica nanoparticles with suitable particle size and shortened synthesis time

Author affiliations


  • Ngoc Hoi Nguyen Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0001-9227-8496
  • Cuu Khoa Nguyen Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Viet Nam
  • Dai Hai Nguyen Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0003-3501-7390




hard-templating, hollow mesoporous silica nanoparticle, particle size, HMSN, synthesis time


Hollow mesoporous silica nanoparticles (HMSN), a member of mesoporous silica family synthesized mainly with hard-templating method, has gained great interest in pharmaceutical applications due to their impress characteristics such as good biocompatibility, large specific surface area and pore volume, controllable particle size, large cavity for cargo loading, and flexible surface functionalization possibilities. However, controlling the optimal particle size and shortening the synthesis time have been the issues of HMSN synthesis that needed to be improved. In this study, HMSN was synthesized using hard-templating with some modifications to shorten the synthesis time and adjust the particle size to nearly 100 nm. The obtained HMSN particles showed high uniform morphology as spheres with hollow core-mesoporous shell structure, having the particle diameter of about 90 nm, the hollow diameter of about 68 nm, and the mesoporous shell thickness of about 11 nm. The total time for the main reactions was shortened by more than half from 21 hours to 9 hours. Additionally, MTT assays revealed that the synthesized HMSN was biocompatible material. This modified hard-template method with shorter synthesis time and nearly 100 nm obtained particle diameter would be meaningful for scientific research and industrial scale production.


Download data is not yet available.


Karaman D. Ş. and H. Kettiger. - Silica-based nanoparticles as drug delivery systems: Chances and challenges, in Alexandru M. G. (Eds.), Inorganic Frameworks as Smart Nanomedicines, Elsevier Inc., Amsterdam, 2018, pp. 1-40. https://doi.org/10.1016/B978-0-12-813661-4.00001-8.

Yanagisawa T., T. Shimizu K. Kuroda, and Kato C. - Trimethylsilyl derivatives of alkyltrimethylammonium–kanemite complexes and their conversion to microporous SiO2 materials, Bulletin of the Chemical Society of Japan 63 (5) (1990) 1535-1537. https://doi.org/10.1246/bcsj.63.1535.

Zhou Y., G. Quan, Q. Wu, X. Zhang, B. Niu, B. Wu, Y. Huang, X. Pan, and C. Wu. - Mesoporous silica nanoparticles for drug and gene delivery, Acta pharmaceutica sinica B 8 (2) (2018) 165-177. DOI: 10.1016/j.apsb.2018.01.007.

Narayan R., U.Y. Nayak, A.M. Raichur, and S. Garg. - Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances, Pharmaceutics 10 (3) (2018) 118. DOI:10.3390/pharmaceutics10030118.

Thi T. T. N., Tran T. V., Tran N. Q., Nguyen C. K., and Nguyen D. H. - Hierarchical self-assembly of heparin-PEG end-capped porous silica as a redox sensitive nanocarrier for doxorubicin delivery, Materials Science and Engineering C 70 (2017) 947-954. https://doi.org/10.1016/j.msec.2016.04.085.

Chen Y. - Synthesis of hollow mesoporous silica nanoparticles by silica-etching chemistry for biomedical applications, in Chen, Y. (Eds.), Design, Synthesis, Multifunctionalization and Biomedical Applications of Multifunctional Mesoporous Silica-Based Drug Delivery Nanosystems, Springer, Berlin, Heidelberg, 2016, pp. 31-46. https://doi.org/10.1007/978-3-662-48622-1_2.

Bao Y., Shi C., Wang T., Li X., and Ma J. - Recent progress in hollow silica: Template synthesis, morphologies and applications, Microporous and Mesoporous Materials 227 (2016) 121-136. https://doi.org/10.1016/j.micromeso.2016.02.040.

Gonçalves M. - Sol-gel silica nanoparticles in medicine: A natural choice. Design, synthesis and products, Molecules 23 (8) (2018) 2021. doi: 10.3390/molecules23082021.

Chen F., Hong H., Shi S., Goel S., Valdovinos H. F., Hernandez R., Theuer C. P., Barnhart T. E., and Cai W. - Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy, Scientific reports 4 (1) (2014) 1-10. doi: 10.1038/srep05080.

Nguyen Thi N. T., Pham Tran L. P., Le N. T. T., Cao M. T., Tran T. N., Nguyen N. T., Nguyen C. H., Nguyen D. H., Than V. T., and Le Q. T. - The engineering of porous silica and hollow silica nanoparticles to enhance drug-loading capacity, Processes 7 (11) (2019) 805. https://doi.org/10.3390/pr7110805.

Thi N. T. N. and Nguyen D. H. - Hollow mesoporous silica nanoparticles fabrication for anticancer drug delivery, Vietnam Journal of Science and Technology 58 (1) (2020) 39. https://doi.org/10.15625/2525-2518/58/1/14267.

Mitchell M. J., Billingsley M. M., Haley R. M., M.E. Wechsler, N.A. Peppas, and R. Langer. - Engineering precision nanoparticles for drug delivery, Nature Reviews Drug Discovery. 20 (2) (2021) 101-124. https://doi.org/10.1038/s41573-020-0090-8.

Nguyen T. N. T., N. T. T. Le, N. H. Nguyen, B. T. K. Ly, T. D. Nguyen, and D. H. Nguyen - Aminated hollow mesoporous silica nanoparticles as an enhanced loading and sustained releasing carrier for doxorubicin delivery, Microporous and Mesoporous Materials 309 (2020) 110543. https://doi.org/10.1016/j.micromeso.2020.110543.

Desai M. P., V. Labhasetwar, E. Walter, R. J. Levy, and G. L. Amidon. - The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent, Pharmaceutical research. 14 (11) (1997) 1568-1573. https://doi.org/10.1023/ A:1012126301290.

Nguyen T. N. T., D. H. N. Tran, L. G. Bach, and D. H. Nguyen - Surface PEGylation of hollow mesoporous silica nanoparticles via aminated intermediate, Progress in Natural Science: Materials International 29 (6) (2019) 612-616. https://doi.org/10.1016/ j.pnsc.2019.10.002.

Han Y., Z. Lu, Z. Teng, J. Liang, Z. Guo, D. Wang, M. Y. Han, and W. Yang. - Unraveling the growth mechanism of silica particles in the stober method: in situ seeded growth model, Langmuir. 33 (23) (2017) 5879-5890. https://doi.org/10.1021/ acs.langmuir.7b01140.

Vazquez N. I., Z. Gonzalez, B. Ferrari, and Y. Castro - Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications, Boletín de la Sociedad Española de Cerámica y Vidrio 56 (3) (2017) 139-145. https://doi.org/ 10.1016/j.bsecv.2017.03.002.

Masalov V., N. Sukhinina E. Kudrenko, and G. Emelchenko - Mechanism of formation and nanostructure of Stöber silica particles, Nanotechnology 22 (27) (2011) 275718. doi: 10.1088/0957-4484/22/27/275718.

Li W., Y. Tian, C. Zhao, B. Zhang, H. Zhang, Q. Zhang, and W. Geng. - Investigation of selective etching mechanism and its dependency on the particle size in preparation of hollow silica spheres, Journal of Nanoparticle Research 17 (12) (2015) 1-11. https://doi.org/10.1007/s11051-015-3291-z.

Sikora A., A. G. Shard, and C. Minelli. - Size and ζ-potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing, Langmuir 32 (9) (2016) 2216-2224. https://doi.org/10.1021/acs.langmuir.5b04160.

Danaei M., M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, and M. Mozafari. - Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems, Pharmaceutics. 10 (2) (2018) 57. DOI: 10.3390/pharmaceutics10020057.

Guston D. H. - Encyclopedia of nanoscience and society, SAGE Publications Inc., Washington DC, 2010.

Peer D., J. Kar, S. Hong, O. Farokhazad, and L. R. Margalit. - Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology 2 (12) (2007) 751-60. doi:10.1038/nnano.2007.387.

Jiao Y., J. Guo, S. Shen, B. Chang, Y. Zhang, X. Jiang, and W. Yang. - Synthesis of discrete and dispersible hollow mesoporous silica nanoparticles with tailored shell thickness for controlled drug release, Journal of Materials Chemistry. 22 (34) (2012) 17636-17643. DOI:10.1039/C2JM31821K.

Cheng K., Y. Zhang, Y. Li, Z. Gao, F. Chen, K. Sun, P. An, C. Sun, Y. Jiang, and B. Sun. - A novel pH-responsive hollow mesoporous silica nanoparticle (HMSN) system encapsulating doxorubicin (DOX) and glucose oxidase (GOX) for potential cancer treatment, Journal of Materials Chemistry B. 7 (20) (2019) 3291-3302. https://doi.org/10.1039/C8TB03198C.

Khoeini M., A. Najafi, H. Rastegar, and M. Amani. - Improvement of hollow mesoporous silica nanoparticles synthesis by hard-templating method via CTAB surfactant, Ceramics International. 45 (10) (2019) 12700-12707. https://doi.org/10.1016/j.ceramint. 2019.03.125.

Dubey R., Y. Rajesh, and M. More. - Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications, Materials Today: Proceedings. 2 (4-5) (2015) 3575-3579. DOI:10.1016/j.matpr.2015.07.098.

Joseph, E. and G. Singhvi. - Multifunctional nanocrystals for cancer therapy: a potential nanocarrier, in Alexandru M. G. (Eds.) Nanomaterials for drug delivery and therapy, Elsevier Inc., Amsterdam, 2019, pp. 91-116. https://doi.org/10.1016/B978-0-12-816505-8.00007-2.

Scarlett, N.V. and I.C. Madsen. - Effect of microabsorption on the determination of amorphous content via powder X-ray diffraction, Powder Diffraction. 33 (1) (2018) 26-37. DOI: https://doi.org/10.1017/S0885715618000052.




How to Cite

N. H. Nguyen, C. K. Nguyen, and D. H. Nguyen, “A modified hard-templating for hollow mesoporous silica nanoparticles with suitable particle size and shortened synthesis time”, Vietnam J. Sci. Technol., vol. 62, no. 3, pp. 475–485, Mar. 2024.