The role of copper decorating poly(1,8-diaminonaphthalene)/graphene electrodes as a catalyst in the determination of nitrite
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16658Keywords:
poly(1,8-diaminonaphthalene)/graphene, nitrite, sensor, copper mine, Ca-based catalystsAbstract
. Electroactive poly(1,8-diaminonaphthalene) is known to have a high affinity for metal ions thanks to amine and imine groups in the polymer chain. However, electrochemical sensors based on pristine P(1,8-DAN) have a major drawback concerning its poor electrical conductivity. To solve this problem, recently P(1,8-DAN) has been modified with some advanced nanomaterials such as carbonaceous materials or different metallic elements. In this research, we reported the synthesis and electrochemical characterization of a poly(1,8-diaminonaphthalene)/graphene composite film capable of adsorbing Cu2+ ions towards the application of nitrite sensing. P(1,8-DAN) was directly electropolymerized on graphene-coated glassy carbon electrode by a potential cycling between –0.15 and +0.95 V (vs. SCE) at a scan rate of 0.05 V/s, in aqueous solution containing 1.0 M HClO4 and 1.0 mM monomer 1,8-DAN,. The adsorption of Cu2+ ions onto the P(1,8-DAN) thin film was caried out in 0.1 M Cu(NO3)2 solution at 80 oC, followed by electrochemically redution to metal Cu0 by applying -0.4 V. The obtained copper decorating poly(1,8-diaminonaphthalene)/graphene (Gr/P(1,8-DAN)-Cu) electrodes acted as a catalyst in the enhancement of electrochemical signal for the determination of nitrite. The linear voltammetric response to the nitrite concentration was observed by a square wave voltammetric technique in the range of 0.69 to 1.12 mM with a detection limit of 0.13 mM. The results open up the path for designing other nitrite sensing based on our novel approach.
Downloads
References
Jackowska K., A. Kudelski, J. Bukowska - Poly-1,8-Diaminonaphthalene: Sensor for Heavy Metal Ions, Mater. Sci. Forum 191 (1995) 247-250. https://doi.org/10.4028/ www.scientific.net/MSF.191.247. DOI: https://doi.org/10.4028/www.scientific.net/MSF.191.247
Pałys B. J., M. Skompska, K. Jackowska - Sensitivity of poly 1,8-diaminonaphthalene to heavy metal ions - electrochemical and vibrational spectra studies, J. Electroanal. Chem. 433 (1) (1997) 41-48. https://doi.org/10.1016/S0022-0728(97)00144-7. DOI: https://doi.org/10.1016/S0022-0728(97)00144-7
Kudelski A., J. Bukowska, K. Jackowska - Trapping of Cu2+ and VO2+ ions in conducting polymer matrices - EPR studies, J. Mol. Struct. 482-483 (1999) 291-294. https://doi.org/10.1016/S0022-2860(98)00933-8. DOI: https://doi.org/10.1016/S0022-2860(98)00933-8
Nguyen D.T., L.D. Tran, H. Le Nguyen, B.H. Nguyen, N. Van Hieu - Modified interdigitated arrays by novel poly(1,8-diaminonaphthalene)/carbon nanotubes composite for selective detection of mercury(II), Talanta 85 (5) (2011) 2445-2450. https://doi.org/10.1016/j.talanta.2011.07.094. DOI: https://doi.org/10.1016/j.talanta.2011.07.094
Nasalska A., M. Skompska - Removal of toxic chromate ions by the films of poly(1,8-diaminonaphthalene), J. Appl. Electrochem. 33 (1) (2003) 113-119. https://doi.org/ 10.1023/A:1022952019530. DOI: https://doi.org/10.1023/A:1022952019530
Fındık S., M. Gülfen, A.O. Aydın - Adsorption of Selenite Ions onto Poly(1,8-diaminonaphthalene) Synthesized by Using Ammonium Persulfate, Sep. Sci. Technol. 49 (18) (2014) 2890-2896. https://doi.org/10.1080/01496395.2014.946144. DOI: https://doi.org/10.1080/01496395.2014.946144
Nabid M. R., Sedghi R., Behbahani M., Arvan B., Heravi M. M., Oskooie H. A. - Application of Poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples, J. Mol. Recognit. 27 (7) (2014) 421-428. https://doi.org/ 10.1002/jmr.2361. DOI: https://doi.org/10.1002/jmr.2361
Li X. G., M. R. Huang, S. X. Li - Facile synthesis of poly(1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization, Acta Mater. 52 (18) (2004) 5363-5374. https://doi.org/10.1016/ j.actamat.2004.07.042. DOI: https://doi.org/10.1016/j.actamat.2004.07.042
Akkaya T., M. Gülfen, U. Olgun - Adsorption of rhodium(III) ions onto poly(1,8-diaminonaphthalene) chelating polymer: Equilibrium, kinetic and thermodynamic study, Reactive and Functional Polymers 73 (12) (2013) 1589-1596. https://doi.org/10.1016/ j.reactfunctpolym.2013.09.001. DOI: https://doi.org/10.1016/j.reactfunctpolym.2013.09.001
Hassan K. M., A. A. Hathoot, R. Maher, M. Abdel Azzem - Electrocatalytic oxidation of ethanol at Pd, Pt, Pd/Pt and Pt/Pd nano particles supported on poly 1,8-diaminonaphthalene film in alkaline medium, RSC Advances 8 (28) (2018) 15417-15426. https://doi.org/10.1039/C7RA13694C. DOI: https://doi.org/10.1039/C7RA13694C
Hung G. V., N. L. Huy, B. T. H. Van, N. T. Dung, N. T. T. Mai - Electrocatalytic activity for dopamine of silver nanoparticle onto graphene/poly(1,8-diaminonaphthalene) electrodes, Vietnam Journal of Catalysis and Adsorption 9 (1) (2020) 111-115. https://doi.org/10.51316/jca.2020.018 DOI: https://doi.org/10.51316/jca.2020.018
Salih F. E., A. Ouarzane, M. El Rhazi - Electrochemical detection of lead (II) at bismuth/Poly(1,8-diaminonaphthalene) modified carbon paste electrode, Arabian Journal of Chemistry 10 (5) (2017) 596-603. https://doi.org/10.1016/j.arabjc.2015. 08.021. DOI: https://doi.org/10.1016/j.arabjc.2015.08.021
Tamburri E., S. Orlanducci, M. L. Terranova, F. Valentini, G. Palleschi, A. Curulli, F. Brunetti, D. Passeri, A. Alippi, M. Rossi - Modulation of electrical properties in single-walled carbon nanotube/conducting polymer composites, Carbon 43 (6) (2005) 1213-1221. https://doi.org/10.1016/j.carbon.2004.12.014. DOI: https://doi.org/10.1016/j.carbon.2004.12.014
Trong V.V., T.T.H. Ngoc, L. Quan, V. V. Huy, B. T. Duy, N. L. Huy, N. V. Anh, N. T. Dung - Synthesis and Electrochemical Characterization of Graphene/Poly(1,8-diaminonaphthalene) Nanocomposite Films, Journal of Science and Technology 129 (2018) (2018) 054-058. https://jst.hust.edu.vn/journals/jst.129.khcn.2018.28.6.11
Hovancová J., I. Šišoláková, R. Oriňaková, A. Oriňak - Nanomaterial-based electrochemical sensors for detection of glucose and insulin, J. Solid State Electrochem 21 (8) (2017) 2147-2166. https://doi.org/10.1007/s10008-017-3544-0. DOI: https://doi.org/10.1007/s10008-017-3544-0
Lin P., F. Chai, R. Zhang, G. Xu, X. Fan, X. Luo - Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing, Microchim. Acta 183 (3) (2016) 1235-1241. https://doi.org/ 10.1007/s00604-016-1751-5. DOI: https://doi.org/10.1007/s00604-016-1751-5
Liu J., X. Bo, Z. Zhao, L. Guo - Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics 74 (2015) 71-77. https://doi.org/10.1016/j.bios.2015.06.042. DOI: https://doi.org/10.1016/j.bios.2015.06.042
Shabalina A.V., K. Belova - Pure Metal Nanoparticles for Selective Electrochemical Sensor of Organic Substances, Key Eng. Mater. 683 (2016) 288-294. 10.4028/www.scientific.net/KEM.683.288. DOI: https://doi.org/10.4028/www.scientific.net/KEM.683.288
Dong S., J. Xi, Y. Wu, H. Liu, C. Fu, H. Liu, F. Xiao - High loading MnO2 nanowires on graphene paper: Facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells, Anal. Chim. Acta 853 (2015) 200-206. https://doi.org/10.1016/j.aca.2014.08.004. DOI: https://doi.org/10.1016/j.aca.2014.08.004
Ren M., X. Kang, L. Li, L. Duan, F. Liao - Electrochemical sensor based on Ni/reduced graphene oxide nanohybrids for selective detection of ascorbic acid, J. Dispersion Sci. Technol. 40 (10) (2019) 1516-1522. https://doi.org/10.1080/01932691.2019.1579653. DOI: https://doi.org/10.1080/01932691.2019.1579653
Huang L., S. Jiao, M. Li - Determination of uric acid in human urine by eliminating ascorbic acid interference on copper(II)-polydopamine immobilized electrode surface, Electrochim. Acta 121 (2014) 233-239. https://doi.org/10.1016/j.electacta.2013.12.158. DOI: https://doi.org/10.1016/j.electacta.2013.12.158
Kassem M.A., O.A. Hazazi, T. Ohsaka, M.I. Awad - Electroanalysis of Pyridoxine at Copper Nanoparticles Modified Polycrystalline Gold Electrode, Electroanalysis 28 (3) (2016) 539-545. https://doi.org/10.1002/elan.201500209. DOI: https://doi.org/10.1002/elan.201500209
Quan D. P., B. T. P. Thao, N. V. Trang, N. L. Huy, N. Q. Dung, M. U. Ahmed, T. D. Lam - The role of copper nanoparticles decorating polydopamine/graphene film as catalyst in the enhancement of uric acid sensing, J. Electroanal. Chem. 893 (2021) 115322. https://doi.org/10.1016/j.jelechem.2021.115322. DOI: https://doi.org/10.1016/j.jelechem.2021.115322
Oztekin Y., M. Tok, E. Bilici, L. Mikoliunaite, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius - Copper nanoparticle modified carbon electrode for determination of dopamine, Electrochim. Acta 76 (2012) 201-207. https://doi.org/10.1016/j.electacta. 2012.04.105. DOI: https://doi.org/10.1016/j.electacta.2012.04.105
Li Y., J. Z. Sun, C. Bian, J. H. Tong, H. P. Dong, H. Zhang, S. H. Xia - Copper nano-clusters prepared by one-step electrodeposition and its application on nitrate sensing, AIP Advances 5 (4) (2015) 041312. https://doi.org/10.1063/1.4905712. DOI: https://doi.org/10.1063/1.4905712
Davis J., M. J. Moorcroft, S. J. Wilkins, R. G. Compton, M. F. Cardosi - Electrochemical detection of nitrate and nitrite at a copper modified electrode, Analyst 125 (4) (2000) 737-742.https://doi.org/10.1039/A909762G. DOI: https://doi.org/10.1039/a909762g
Manoj D., R. Saravanan, J. Santhanalakshmi, S. Agarwal, V. K. Gupta, R. Boukherroub - Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor, Sensors and Actuators B: Chemical 266 (2018) 873-882. https://doi.org/10.1016/j.snb.2018.03.141. DOI: https://doi.org/10.1016/j.snb.2018.03.141
Karwowska M., A. Kononiuk - Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits, Antioxidants 9 (3) (2020) 241. https://doi.org/10.3390/antiox9030241. DOI: https://doi.org/10.3390/antiox9030241
Liu Z., Y. Zhou, S. Xu, S. Ren, Z. Zhang, Development of a chemiluminescence detector for analysis of nitrite in biological samples, Proceedings Volume 4414, International Conference on Sensor Technology (ISTC 2001), 2001.https://doi.org/ 10.1117/12.440172 DOI: https://doi.org/10.1117/12.440172
Jedličková V., Z. Paluch, Š. Alušı́k - Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma, Journal of Chromatography B 780 (1) (2002) 193-197. https://doi.org/10.1016/S1570-0232(02)00405-1. DOI: https://doi.org/10.1016/S1570-0232(02)00405-1
Ito K., Y. Takayama, N. Makabe, R. Mitsui, T. Hirokawa - Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns, Journal of Chromatography A 1083 (1) (2005) 63-67. https://doi.org/10.1016/j.chroma. 2005.05.073. DOI: https://doi.org/10.1016/j.chroma.2005.05.073
Amanulla B., S. Palanisamy, S. M. Chen, T. W. Chiu, V. Velusamy, J. M. Hall, T. W. Chen, S. K. Ramaraj - Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide, Scientific Reports 7 (1) (2017) 14182. https://doi.org/10.1038/s41598-017-14584-6. DOI: https://doi.org/10.1038/s41598-017-14584-6
Mo R., X. Wang, Q. Yuan, X. Yan, T. Su, Y. Feng, L. Lv, C. Zhou, P. Hong, S. Sun, Z. Wang, C. Li - Electrochemical Determination of Nitrite by Au Nanoparticle/Graphene-Chitosan Modified Electrode, Sensors 18 (7) (2018) 1986. https://doi.org/10.3390/s18071986 DOI: https://doi.org/10.3390/s18071986
Kozub B.R., N.V. Rees, R.G. Compton - Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes?, Sensors and Actuators B: Chemical 143 (2) (2010) 539-546. https://doi.org/10.1016/j.snb.2009.09.065. DOI: https://doi.org/10.1016/j.snb.2009.09.065
Rudd S., M. Dalton, P. Buss, A. Treijs, M. Portmann, N. Ktoris, D. Evans - Selective uptake and sensing of nitrate in poly(3,4-ethylenedioxythiophene), Scientific Reports 7 (1) (2017) 16581. https://doi.org/10.1038/s41598-017-16939-5. DOI: https://doi.org/10.1038/s41598-017-16939-5
Atta N.F., A. Galal, Y.M. Ahmed, M.G. Abdelkader - Development of an Innovative Nitrite Sensing Platform Based on the Construction of an Electrochemical Composite Sensor of Polymer Coated CNTs and Decorated with Magnetite Nanoparticles, Electroanalysis 33 (6) (2021) 1510-1519. https://doi.org/10.1002/elan.202060598. DOI: https://doi.org/10.1002/elan.202060598
Dai J., D. Deng, Y. Yuan, J. Zhang, F. Deng, S. He - Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue), Microchim. Acta 183 (5) (2016) 1553-1561. https://doi.org/10.1007/s00604-016-1773-z. DOI: https://doi.org/10.1007/s00604-016-1773-z
Ye D., L. Luo, Y. Ding, Q. Chen, X. Liu - A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode, Analyst 136 (21) (2011) 4563-4569. https://doi.org/10.1039/C1AN15486A. DOI: https://doi.org/10.1039/c1an15486a
Sivakumar M., S. Mani, S. M. Chen, K. Pandi, T. W. Chen, M. C. Yu - An Electrochemical Selective Detection of Nitrite Sensor For Polyaniline Doped Graphene Oxide Modified Electrode, Int. J. Electrochem. Sci. 12 (2017). https://doi.org/10.20964/ 2017.06.24.
Dung N. T., P. N. Bach, D. L. Anh, T. T. X. Hang - Electrosynthesis of poly(1,8-diaminonaphtalene) film in aqueous medium, Vietnam Journal of Science and Technology 46 (6) (2008) 97-101.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.