The role of copper decorating poly(1,8-diaminonaphthalene)/graphene electrodes as a catalyst in the determination of nitrite

Bui Thi Hong Van, Do Thi Thuy, Nguyen Le Huy, Nguyen Thi Tuyet Mai, Tran Dai Lam, Nguyen Tuan Dung
Author affiliations

Authors

  • Bui Thi Hong Van School of Chemical Engineering, Hanoi University of Science and Technology, 19 Le Thanh Tong Streets, Hai Ba Trung District, Ha Noi, Viet Nam
  • Do Thi Thuy Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Streets, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Le Huy Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Streets, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Thi Tuyet Mai School of Chemical Engineering, Hanoi University of Science and Technology, 19 Le Thanh Tong Streets, Hai Ba Trung District, Ha Noi, Viet Nam
  • Tran Dai Lam Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Streets, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Tuan Dung Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16658

Keywords:

poly(1,8-diaminonaphthalene)/graphene, nitrite, sensor, copper mine, Ca-based catalysts

Abstract

. Electroactive poly(1,8-diaminonaphthalene) is known to have a high affinity for metal ions thanks to amine and imine groups in the polymer chain. However, electrochemical sensors based on pristine P(1,8-DAN) have a major drawback concerning its poor electrical conductivity. To solve this problem, recently P(1,8-DAN) has been modified with some advanced nanomaterials such as carbonaceous materials or different metallic elements. In this research, we reported the synthesis and electrochemical characterization of a poly(1,8-diaminonaphthalene)/graphene composite film capable of adsorbing Cu2+ ions towards the application of nitrite sensing. P(1,8-DAN) was directly electropolymerized on graphene-coated glassy carbon electrode by a potential cycling between –0.15 and +0.95 V (vs. SCE) at a scan rate of 0.05 V/s, in aqueous solution  containing 1.0 M HClO4 and 1.0 mM monomer 1,8-DAN,. The adsorption of Cu2+ ions onto the P(1,8-DAN) thin film was caried out in 0.1 M Cu(NO3)2 solution at 80 oC, followed by electrochemically redution to metal Cu0 by applying -0.4 V. The obtained copper decorating poly(1,8-diaminonaphthalene)/graphene (Gr/P(1,8-DAN)-Cu) electrodes acted as a catalyst in the enhancement of electrochemical signal for the determination of nitrite. The linear voltammetric response to the nitrite concentration was observed by a square wave voltammetric technique in the range of 0.69 to 1.12 mM with a detection limit of 0.13 mM. The results open up the path for designing other nitrite sensing based on our novel approach.

Downloads

Download data is not yet available.

References

Jackowska K., A. Kudelski, J. Bukowska - Poly-1,8-Diaminonaphthalene: Sensor for Heavy Metal Ions, Mater. Sci. Forum 191 (1995) 247-250. https://doi.org/10.4028/ www.scientific.net/MSF.191.247. DOI: https://doi.org/10.4028/www.scientific.net/MSF.191.247

Pałys B. J., M. Skompska, K. Jackowska - Sensitivity of poly 1,8-diaminonaphthalene to heavy metal ions - electrochemical and vibrational spectra studies, J. Electroanal. Chem. 433 (1) (1997) 41-48. https://doi.org/10.1016/S0022-0728(97)00144-7. DOI: https://doi.org/10.1016/S0022-0728(97)00144-7

Kudelski A., J. Bukowska, K. Jackowska - Trapping of Cu2+ and VO2+ ions in conducting polymer matrices - EPR studies, J. Mol. Struct. 482-483 (1999) 291-294. https://doi.org/10.1016/S0022-2860(98)00933-8. DOI: https://doi.org/10.1016/S0022-2860(98)00933-8

Nguyen D.T., L.D. Tran, H. Le Nguyen, B.H. Nguyen, N. Van Hieu - Modified interdigitated arrays by novel poly(1,8-diaminonaphthalene)/carbon nanotubes composite for selective detection of mercury(II), Talanta 85 (5) (2011) 2445-2450. https://doi.org/10.1016/j.talanta.2011.07.094. DOI: https://doi.org/10.1016/j.talanta.2011.07.094

Nasalska A., M. Skompska - Removal of toxic chromate ions by the films of poly(1,8-diaminonaphthalene), J. Appl. Electrochem. 33 (1) (2003) 113-119. https://doi.org/ 10.1023/A:1022952019530. DOI: https://doi.org/10.1023/A:1022952019530

Fındık S., M. Gülfen, A.O. Aydın - Adsorption of Selenite Ions onto Poly(1,8-diaminonaphthalene) Synthesized by Using Ammonium Persulfate, Sep. Sci. Technol. 49 (18) (2014) 2890-2896. https://doi.org/10.1080/01496395.2014.946144. DOI: https://doi.org/10.1080/01496395.2014.946144

Nabid M. R., Sedghi R., Behbahani M., Arvan B., Heravi M. M., Oskooie H. A. - Application of Poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples, J. Mol. Recognit. 27 (7) (2014) 421-428. https://doi.org/ 10.1002/jmr.2361. DOI: https://doi.org/10.1002/jmr.2361

Li X. G., M. R. Huang, S. X. Li - Facile synthesis of poly(1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization, Acta Mater. 52 (18) (2004) 5363-5374. https://doi.org/10.1016/ j.actamat.2004.07.042. DOI: https://doi.org/10.1016/j.actamat.2004.07.042

Akkaya T., M. Gülfen, U. Olgun - Adsorption of rhodium(III) ions onto poly(1,8-diaminonaphthalene) chelating polymer: Equilibrium, kinetic and thermodynamic study, Reactive and Functional Polymers 73 (12) (2013) 1589-1596. https://doi.org/10.1016/ j.reactfunctpolym.2013.09.001. DOI: https://doi.org/10.1016/j.reactfunctpolym.2013.09.001

Hassan K. M., A. A. Hathoot, R. Maher, M. Abdel Azzem - Electrocatalytic oxidation of ethanol at Pd, Pt, Pd/Pt and Pt/Pd nano particles supported on poly 1,8-diaminonaphthalene film in alkaline medium, RSC Advances 8 (28) (2018) 15417-15426. https://doi.org/10.1039/C7RA13694C. DOI: https://doi.org/10.1039/C7RA13694C

Hung G. V., N. L. Huy, B. T. H. Van, N. T. Dung, N. T. T. Mai - Electrocatalytic activity for dopamine of silver nanoparticle onto graphene/poly(1,8-diaminonaphthalene) electrodes, Vietnam Journal of Catalysis and Adsorption 9 (1) (2020) 111-115. https://doi.org/10.51316/jca.2020.018 DOI: https://doi.org/10.51316/jca.2020.018

Salih F. E., A. Ouarzane, M. El Rhazi - Electrochemical detection of lead (II) at bismuth/Poly(1,8-diaminonaphthalene) modified carbon paste electrode, Arabian Journal of Chemistry 10 (5) (2017) 596-603. https://doi.org/10.1016/j.arabjc.2015. 08.021. DOI: https://doi.org/10.1016/j.arabjc.2015.08.021

Tamburri E., S. Orlanducci, M. L. Terranova, F. Valentini, G. Palleschi, A. Curulli, F. Brunetti, D. Passeri, A. Alippi, M. Rossi - Modulation of electrical properties in single-walled carbon nanotube/conducting polymer composites, Carbon 43 (6) (2005) 1213-1221. https://doi.org/10.1016/j.carbon.2004.12.014. DOI: https://doi.org/10.1016/j.carbon.2004.12.014

Trong V.V., T.T.H. Ngoc, L. Quan, V. V. Huy, B. T. Duy, N. L. Huy, N. V. Anh, N. T. Dung - Synthesis and Electrochemical Characterization of Graphene/Poly(1,8-diaminonaphthalene) Nanocomposite Films, Journal of Science and Technology 129 (2018) (2018) 054-058. https://jst.hust.edu.vn/journals/jst.129.khcn.2018.28.6.11

Hovancová J., I. Šišoláková, R. Oriňaková, A. Oriňak - Nanomaterial-based electrochemical sensors for detection of glucose and insulin, J. Solid State Electrochem 21 (8) (2017) 2147-2166. https://doi.org/10.1007/s10008-017-3544-0. DOI: https://doi.org/10.1007/s10008-017-3544-0

Lin P., F. Chai, R. Zhang, G. Xu, X. Fan, X. Luo - Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing, Microchim. Acta 183 (3) (2016) 1235-1241. https://doi.org/ 10.1007/s00604-016-1751-5. DOI: https://doi.org/10.1007/s00604-016-1751-5

Liu J., X. Bo, Z. Zhao, L. Guo - Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics 74 (2015) 71-77. https://doi.org/10.1016/j.bios.2015.06.042. DOI: https://doi.org/10.1016/j.bios.2015.06.042

Shabalina A.V., K. Belova - Pure Metal Nanoparticles for Selective Electrochemical Sensor of Organic Substances, Key Eng. Mater. 683 (2016) 288-294. 10.4028/www.scientific.net/KEM.683.288. DOI: https://doi.org/10.4028/www.scientific.net/KEM.683.288

Dong S., J. Xi, Y. Wu, H. Liu, C. Fu, H. Liu, F. Xiao - High loading MnO2 nanowires on graphene paper: Facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells, Anal. Chim. Acta 853 (2015) 200-206. https://doi.org/10.1016/j.aca.2014.08.004. DOI: https://doi.org/10.1016/j.aca.2014.08.004

Ren M., X. Kang, L. Li, L. Duan, F. Liao - Electrochemical sensor based on Ni/reduced graphene oxide nanohybrids for selective detection of ascorbic acid, J. Dispersion Sci. Technol. 40 (10) (2019) 1516-1522. https://doi.org/10.1080/01932691.2019.1579653. DOI: https://doi.org/10.1080/01932691.2019.1579653

Huang L., S. Jiao, M. Li - Determination of uric acid in human urine by eliminating ascorbic acid interference on copper(II)-polydopamine immobilized electrode surface, Electrochim. Acta 121 (2014) 233-239. https://doi.org/10.1016/j.electacta.2013.12.158. DOI: https://doi.org/10.1016/j.electacta.2013.12.158

Kassem M.A., O.A. Hazazi, T. Ohsaka, M.I. Awad - Electroanalysis of Pyridoxine at Copper Nanoparticles Modified Polycrystalline Gold Electrode, Electroanalysis 28 (3) (2016) 539-545. https://doi.org/10.1002/elan.201500209. DOI: https://doi.org/10.1002/elan.201500209

Quan D. P., B. T. P. Thao, N. V. Trang, N. L. Huy, N. Q. Dung, M. U. Ahmed, T. D. Lam - The role of copper nanoparticles decorating polydopamine/graphene film as catalyst in the enhancement of uric acid sensing, J. Electroanal. Chem. 893 (2021) 115322. https://doi.org/10.1016/j.jelechem.2021.115322. DOI: https://doi.org/10.1016/j.jelechem.2021.115322

Oztekin Y., M. Tok, E. Bilici, L. Mikoliunaite, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius - Copper nanoparticle modified carbon electrode for determination of dopamine, Electrochim. Acta 76 (2012) 201-207. https://doi.org/10.1016/j.electacta. 2012.04.105. DOI: https://doi.org/10.1016/j.electacta.2012.04.105

Li Y., J. Z. Sun, C. Bian, J. H. Tong, H. P. Dong, H. Zhang, S. H. Xia - Copper nano-clusters prepared by one-step electrodeposition and its application on nitrate sensing, AIP Advances 5 (4) (2015) 041312. https://doi.org/10.1063/1.4905712. DOI: https://doi.org/10.1063/1.4905712

Davis J., M. J. Moorcroft, S. J. Wilkins, R. G. Compton, M. F. Cardosi - Electrochemical detection of nitrate and nitrite at a copper modified electrode, Analyst 125 (4) (2000) 737-742.https://doi.org/10.1039/A909762G. DOI: https://doi.org/10.1039/a909762g

Manoj D., R. Saravanan, J. Santhanalakshmi, S. Agarwal, V. K. Gupta, R. Boukherroub - Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor, Sensors and Actuators B: Chemical 266 (2018) 873-882. https://doi.org/10.1016/j.snb.2018.03.141. DOI: https://doi.org/10.1016/j.snb.2018.03.141

Karwowska M., A. Kononiuk - Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits, Antioxidants 9 (3) (2020) 241. https://doi.org/10.3390/antiox9030241. DOI: https://doi.org/10.3390/antiox9030241

Liu Z., Y. Zhou, S. Xu, S. Ren, Z. Zhang, Development of a chemiluminescence detector for analysis of nitrite in biological samples, Proceedings Volume 4414, International Conference on Sensor Technology (ISTC 2001), 2001.https://doi.org/ 10.1117/12.440172 DOI: https://doi.org/10.1117/12.440172

Jedličková V., Z. Paluch, Š. Alušı́k - Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma, Journal of Chromatography B 780 (1) (2002) 193-197. https://doi.org/10.1016/S1570-0232(02)00405-1. DOI: https://doi.org/10.1016/S1570-0232(02)00405-1

Ito K., Y. Takayama, N. Makabe, R. Mitsui, T. Hirokawa - Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns, Journal of Chromatography A 1083 (1) (2005) 63-67. https://doi.org/10.1016/j.chroma. 2005.05.073. DOI: https://doi.org/10.1016/j.chroma.2005.05.073

Amanulla B., S. Palanisamy, S. M. Chen, T. W. Chiu, V. Velusamy, J. M. Hall, T. W. Chen, S. K. Ramaraj - Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide, Scientific Reports 7 (1) (2017) 14182. https://doi.org/10.1038/s41598-017-14584-6. DOI: https://doi.org/10.1038/s41598-017-14584-6

Mo R., X. Wang, Q. Yuan, X. Yan, T. Su, Y. Feng, L. Lv, C. Zhou, P. Hong, S. Sun, Z. Wang, C. Li - Electrochemical Determination of Nitrite by Au Nanoparticle/Graphene-Chitosan Modified Electrode, Sensors 18 (7) (2018) 1986. https://doi.org/10.3390/s18071986 DOI: https://doi.org/10.3390/s18071986

Kozub B.R., N.V. Rees, R.G. Compton - Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes?, Sensors and Actuators B: Chemical 143 (2) (2010) 539-546. https://doi.org/10.1016/j.snb.2009.09.065. DOI: https://doi.org/10.1016/j.snb.2009.09.065

Rudd S., M. Dalton, P. Buss, A. Treijs, M. Portmann, N. Ktoris, D. Evans - Selective uptake and sensing of nitrate in poly(3,4-ethylenedioxythiophene), Scientific Reports 7 (1) (2017) 16581. https://doi.org/10.1038/s41598-017-16939-5. DOI: https://doi.org/10.1038/s41598-017-16939-5

Atta N.F., A. Galal, Y.M. Ahmed, M.G. Abdelkader - Development of an Innovative Nitrite Sensing Platform Based on the Construction of an Electrochemical Composite Sensor of Polymer Coated CNTs and Decorated with Magnetite Nanoparticles, Electroanalysis 33 (6) (2021) 1510-1519. https://doi.org/10.1002/elan.202060598. DOI: https://doi.org/10.1002/elan.202060598

Dai J., D. Deng, Y. Yuan, J. Zhang, F. Deng, S. He - Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue), Microchim. Acta 183 (5) (2016) 1553-1561. https://doi.org/10.1007/s00604-016-1773-z. DOI: https://doi.org/10.1007/s00604-016-1773-z

Ye D., L. Luo, Y. Ding, Q. Chen, X. Liu - A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode, Analyst 136 (21) (2011) 4563-4569. https://doi.org/10.1039/C1AN15486A. DOI: https://doi.org/10.1039/c1an15486a

Sivakumar M., S. Mani, S. M. Chen, K. Pandi, T. W. Chen, M. C. Yu - An Electrochemical Selective Detection of Nitrite Sensor For Polyaniline Doped Graphene Oxide Modified Electrode, Int. J. Electrochem. Sci. 12 (2017). https://doi.org/10.20964/ 2017.06.24.

Dung N. T., P. N. Bach, D. L. Anh, T. T. X. Hang - Electrosynthesis of poly(1,8-diaminonaphtalene) film in aqueous medium, Vietnam Journal of Science and Technology 46 (6) (2008) 97-101.

Downloads

Published

30-12-2022

How to Cite

[1]
B. T. Hong Van, D. T. Thuy, N. L. Huy, N. T. T. Mai, T. D. Lam, and N. T. Dung, “The role of copper decorating poly(1,8-diaminonaphthalene)/graphene electrodes as a catalyst in the determination of nitrite”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 1056–1066, Dec. 2022.

Issue

Section

Materials

Most read articles by the same author(s)