Magnetism in diamond graphene nanoflakes

Phung Thi Thu, Nguyen Thi Mai, Pham Thi Lien, Nguyen Thanh Tung
Author affiliations

Authors

  • Phung Thi Thu Graduate University of Science and technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Mai Instutute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Pham Thi Lien Instutute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thanh Tung Instutute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16540

Keywords:

Graphene nanoflakes, magnetism, phase transition point, mean-field Hubbard approximation

Abstract

We numerically study in this work the magnetic properties induced by the on-site electron-electron interaction in graphene nanoflakes shaped diamond with a variety of sizes. By the mean-field Hubbard approximation, a phase transition in analogy to infinite graphene from non-magnetism to antiferromagnetism is observed. A very weak interaction U, approximately zero, is reported to be able to trigger magnetic ordering in a finite nanoflake compared to infinite structure. Furthermore, the investigation also indicates the edge and size dependence of magnetism. The antiferromagnetic ground state is of robust stability to larger zigzag nanoflake size and stronger interaction. The phase transition point, Uc, is found to be sensitive to the size denoted by means of the reduction of Uc as the size increases. The important role of edge effect causing the spin polarization along zigzag termination is confirmed for the diamond nanoflakes.

Downloads

Download data is not yet available.

References

Hu G. and Xiang B. - Recent advances in two-dimensionalspintronics. Nanoscale Res. Lett.15, (2020) 226. https://doi: 10.1186/s11671-020-03458-y. DOI: https://doi.org/10.1186/s11671-020-03458-y

Liu Y., Zeng C., ZhongJ., Ding J.,Wang Z. M., and Liu Z. - Spintronics in two-dimensional materials. Nano-Micro Lett.12 (2020) 93. https://doi: 10.1007/s40820-020-00424-2. DOI: https://doi.org/10.1007/s40820-020-00424-2

Castro Neto A. H., Guinea F.,Peres N.M.R., Novoselov K.S.and Geim A.K.-The elec- tronic properties of graphene. Rev. Mod. Phys.81(1) (2009) 109. https:// doi.org/10.1103/RevModPhys.81.109. DOI: https://doi.org/10.1103/RevModPhys.81.109

Wakabayashi K., Sasaki K.-I, Nakanishi T. and Enoki T. - Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater.11 (2010) 054504. https://doi.org/10.1088/1468-6996/11/5/054504. DOI: https://doi.org/10.1088/1468-6996/11/5/054504

Bullock C. J. and Bussy C. - Biocompatibility considerations in the design of graphene biomedical materials. Adv. Mater. Interfaces (2019)1900229 (1–15). https:// doi.org/10.1002/admi.201900229. DOI: https://doi.org/10.1002/admi.201900229

Roche A. and Valenzuela S. O. - Graphene spintronics: puzzing controversies and challenges for spin manipulation. J. Phys. D: Appl. Phys.47(9) (2014) 094011. http:// dx.doi.org/10.1088/0022-3727/47/9/094011. DOI: https://doi.org/10.1088/0022-3727/47/9/094011

Guimaraes M. H. D., Zomer P. J., Ingla-Aynes J., Brant J. C., and van Wees B. J. - Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field. Phys. Rev. Lett.113 (2014) 086602. https://doi.org/10.1103/PhysRevLett.113.086602. DOI: https://doi.org/10.1103/PhysRevLett.113.086602

Dankert A., Kamalakar M. V., Bergsten J., and Dash S. P. - Spin transport and precession in graphene measured by nonlocal and three-terminal methods. Appl. Phys. Lett.104 (2014) 192403. https:// doi.org/10.1063/1.4876060. DOI: https://doi.org/10.1063/1.4876060

Drogeler M., Volmer F., Wolter M., Terres B., Watanabe K., Taniguchi T., Guntherodt G., Stampfer C., and Beschoten B. - Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature. Nano Letts.14(11) (2014) 6050. https:// doi.org/10.1021/nl501278c. DOI: https://doi.org/10.1021/nl501278c

Yazyev O. V. and Helm L. - Defect-induced magnetism in graphene. Phys. Rev. B, 75 (2007) 125408. https://doi.org/10.1103/PhysRevB.75.125408. DOI: https://doi.org/10.1103/PhysRevB.75.125408

Wang W., Huang Y., Song Y., Zhang X., Ma Y., Liang J. and Chen Y. - Room-temperature ferromagnetism of graphene. Nano Lett.9(1) (2009) 220. https:// doi.org/10.1021/nl802810g. DOI: https://doi.org/10.1021/nl802810g

Nair R. R., Tsai I.-L., Sepioni M., Lehtinen O., Keinonen J., Krasheninnikov A. V., Castro Neto A. H., Katsnelson M. I., Geim A. K. and Grigorieva I. V. - Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun.4 (2013) 2010. https// doi: 10.1038/ncomms3010. DOI: https://doi.org/10.1038/ncomms3010

Miao Q., Wang L., Liu Z., Wei B., Xu F. and Fei W. - Magnetic properties of N-doped graphene with high Curie temperature. Sci. Rep.6 (2016) 21832. https:// doi: 10.1038/srep21832. DOI: https://doi.org/10.1038/srep21832

Blonski P., Tuˇcek J., Sofer Z., Mazanek V., Petr M., Pumera M., Otyepka M. and Zboˇril R. - Doping with graphitic Nitrogen triggers ferromagnetism in graphene. J. Am. Chem. Soc.139(8) (2017) 3171. https:// doi.org/10.1021/jacs.6b12934. DOI: https://doi.org/10.1021/jacs.6b12934

Magda G. Z., Jin X. Z., Hagymasi I., Vancso P., Osvath Z., Nemes-Incze P., Hwang C., Biro L. P., and Tapaszto L. - Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514 (2014) 608. https://doi: 10.1038/nature13831. DOI: https://doi.org/10.1038/nature13831

Valli A., Amaricci A., Brosco V., and Capone M. - Quantum interference assisted spin filtering in graphene nanoflakes. Nano Lett.18(3) (2018) 2158. https:// doi.org/10.1021/acs.nanolett.8b00453. DOI: https://doi.org/10.1021/acs.nanolett.8b00453

Raczkowski M., Peters R., Phung T. T.,TakemoriN., Assaad F. F., Honecker A. and Vahedi J. - Hubbard model on the honeycomb lattice: from static and dynamical mean- field theories to lattice quantum Monte Carlo simulation. Phys. Rev. B 101 (2020) 125103. https://doi.org/10.1103/PhysRevB.101.125103. DOI: https://doi.org/10.1103/PhysRevB.101.125103

Viana-Gomes J., Pereira V. M. and Peres N. M. R. - Magnetism in strained graphene dots. Phys. Rev. B 80 (2009) 245436. https://doi.org/10.1103/PhysRevB.80.245436. DOI: https://doi.org/10.1103/PhysRevB.80.245436

Zarenia M., Chaves A., Farias G. A. and Peeters F. M. - Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and the Dirac approach. Phys. Rev. B84 (2011) 245403. https://doi.org/10.1103/PhysRevB.84.245403. DOI: https://doi.org/10.1103/PhysRevB.84.245403

Downloads

Published

28-02-2023

How to Cite

[1]
P. T. Thu, N. T. Mai, P. T. Lien, and N. T. Tung, “Magnetism in diamond graphene nanoflakes”, Vietnam J. Sci. Technol., vol. 61, no. 1, pp. 64–71, Feb. 2023.

Issue

Section

Materials

Most read articles by the same author(s)