Insights into the magnetic origin of CunCr (n= 9÷11) clusters: A superposition of magnetic and electronic shells


  • Nguyen Thi Mai
  • Ngo Thi Lan
  • Nguyen Thanh Tung Institute of Materials Science, VAST



copper-chromium clusters, magnetic moment, superatoms, s-d hybridization


Interests in Cu-Cr sub-nanometer systems have been increasing due to the recently-found icosahedral Cu12Cr cluster as a superatomic molecule, where the 3d-Cr and 4s-Cu electrons can phenomenologically form the 18-e molecular shell (1S21P61D10) of Cu12Cr. In this report, we set out to investigate the energetically-preferred geometries and stabilities of CunCr (n = 9÷11) clusters using the density-functional-theory calculations. It is found that not all of 3d-Cr electrons involve in the formation of the cluster shell and the remaining localized ones cause the magnetic moment of the clusters, which is different from what was believed.


Download data is not yet available.


Hiromasa Tanaka, Sven Neukermans, Ewald Janssens, Roger E. Silverans, and Peter Lievens 2003 Journal of Chemical Physics 119 14 7115-7122

Nguyen Thanh Tung, Ewald Janssens 2014 Appl. Phys. B 114 497-502

G. Guzmán-Ramírez, F. Aguilera-Granja, and J. Robles 2010 The European Physical Journal D 57 49-60

Vu Thi Ngan, Ewald Janssens, Pieterjan Claes, Jonathan T. Lyon, André Fielicke, Minh Tho Nguyen, and Peter Lievens 2012 Chem. Eur. J 18 15788-15793

D. Die, X. Y. Kuang, J. J. Gua, B. X. Zheng 2010 J. Phys. Chem. Solids 71 770-775

H. Q. Wang, X. Y. Kuang, H. F. Li 2010 Phys. Chem. Chem. Phys 12 5156-5165

G. Li, K. Wang, Q. Wang, Y. Zhao, J. Du, J. He 2012 Mater. Lett 88 126-128

W. Ma, F. Chen 2012 J. Alloys Compd 541 79-83

X. H. Cheng, D. J. Ding, Y. G. Yu, M. X. Jin 2012 J. Chem. Phys 25 169-176

L. M. Wang, R. Pal, W. Huang, X. C. Zeng, L. S. Wang 2010 J. Chem. Phys 132 114306

D. M. Cox, M. R. Zakin, and A. Kaldor 1987 US

Y. H. Zhou, Z. Zeng, X. Ju 2009 Microelectron. J 40 832-834

Wang Ling, Die Dong, Wang Shi-Jian, Zhao Zheng-Quan 2015 J. Chem. Phys. Soilds 76 10-16

D. Bagayoko, P. Blaha, J. Callaway 1986 Phys. Rev 34 3572-3576

E. Florez, F. Mondragon, F. lllas 2012 Surf. Sci 606 1010-1018

Z. Y. Jiang, K. H. Lee, S. T. Li, S. Y. Chu 2006 Phys. Rev. B 73 235423

Bandyopadhyay D. J Mol Model. 2012. Journal of Molecular Modeling 18 3887–3902

Wang J, et al. 2005 J Chem Phys 123, 244303

Vu Thi Ngan Philipp Gruene Pieterjan Claes Ewald Janssens André Fielicke Minh Tho Nguyen and Peter Lievens 2010 J. Am. Chem. Soc.132 4415589-15602

José Mejía-López, Griselda García, and Aldo H. Romero J. Chem. Phys. 131, 044701 (2009)

N. Veldeman, T. Holtzl, S. Neukermans, T. Veszpremi, M. T. Nguyen, P. Lievens 2007 Phys. Rev. A 76 011201

Q. Sun, X. G. Gong, Q. Q. Zheng, G. H. Wang 1995 Phys. Lett. A 209 249-253

Hung Tan Pham, Ngo Tuan Cuong, Nguyen Minh Tam, and Nguyen Thanh Tung 2016 J. Phys Chem J. Phys. Chem. A 120 37 7335-7343

M. J. Frisch et al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009

P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas, 1964 Phys. Rev. B, 136 864

C. G. Li, Z. G. Shen, Y. F. Hu, Y. N. Tang, W. G. Chen, and B. Z. Ren, 2017 Sci. Rep. 1345