A TWO-CHANNEL MODEL FOR REPRESENTATION LEARNING IN VIETNAMESE SENTIMENT CLASSIFICATION PROBLEM
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/36/4/14829Abstract
Sentiment classification (SC) aims to determine whether a document conveys a positive or negative opinion. Due to the rapid development of the digital world, SC has become an important research topic that affects many aspects of our life. In SC based on machine learning, the representation of the document strongly influences on its accuracy. Word Embedding (WE)-based techniques, i.e., Word2vec techniques, are proved to be beneficial techniques to the SC problem. However, Word2vec is often not enough to represent the semantic of documents with complex sentences of Vietnamese. In this paper, we propose a new representation learning model called a \textbf{two-channel vector} to learn a higher-level feature of a document in SC. Our model uses two neural networks to learn the semantic feature, i.e., Word2vec and the syntactic feature, i.e., Part of Speech tag (POS). Two features are then combined and input to a \textit{Softmax} function to make the final classification. We carry out intensive experiments on $4$ recent Vietnamese sentiment datasets to evaluate the performance of the proposed architecture. The experimental results demonstrate that the proposed model can significantly enhance the accuracy of SC problems compared to two single models and a state-of-the-art ensemble method.Metrics
Metrics Loading ...
Downloads
Published
14-12-2020
How to Cite
[1]
Q. H. Nguyen, L. Vu, and Q. U. Nguyen, “A TWO-CHANNEL MODEL FOR REPRESENTATION LEARNING IN VIETNAMESE SENTIMENT CLASSIFICATION PROBLEM”, JCC, vol. 36, no. 4, p. 305–323, Dec. 2020.
Issue
Section
Articles
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.