A DOUBLE-SHRINK AUTOENCODER FOR NETWORK ANOMALY DETECTION
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/36/2/14578Keywords:
Deep learning, AutoEncoders, Anomaly detection, Latent representationAbstract
The rapid development of the Internet and the wide spread of its applications has affected many aspects of our life. However, this development also makes the cyberspace more vulnerable to various attacks. Thus, detecting and preventing these attacks are crucial for the next development of the Internet and its services. Recently, machine learning methods have been widely adopted in detecting network attacks. Among many machine learning methods, AutoEncoders (AEs) are known as the state-of-the-art techniques for network anomaly detection. Although, AEs have been successfully applied to detect many types of attacks, it is often unable to detect some difficult attacks that attempt to mimic the normal network traffic. In order to handle this issue, we propose a new model based on AutoEncoder called Double-Shrink AutoEncoder (DSAE). DSAE put more shrinkage on the normal data in the middle hidden layer. This helps to pull out some anomalies that are very similar to normal data. DSAE are evaluated on six well-known network attacks datasets. The experimental results show that our model performs competitively to the state-of-the-art model, and often out-performs this model on the attacks group that is difficult for the previous methods.Metrics
Metrics Loading ...
Downloads
Published
11-05-2020
How to Cite
[1]
C. T. Bui, L. C. Van, M. Hoang, and Q. U. Nguyen, “A DOUBLE-SHRINK AUTOENCODER FOR NETWORK ANOMALY DETECTION”, JCC, vol. 36, no. 2, p. 159–172, May 2020.
Issue
Section
Articles
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.