Convergence analysis of the new hybrid genetic algorithm for job shop scheduling problem
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/29/2/1260Keywords:
Job shop scheduling, genetic algorithm, global convergence, Markov chainAbstract
In the recent our paper, we proposed a new hybrid genetic algorithm (NHGA) for the job shop scheduling problem (JSP). The method of encoding we used was Natural coding instead of traditional binary coding. This manner of coding has a lot of advantages but its convergence is still an open issue for years. This paper analyzes the convergence properties of the NHGA by applied properties of Markov chain. Based on the Markov chain analysis of genetic algorithm, we point out the proposed method leads to convergence to the global optimum in case of Natural coding.Metrics
Metrics Loading ...
Downloads
Published
21-04-2013
How to Cite
[1]
L. T. Tuyên, N. H. Mùi, and V. Đình Hòa, “Convergence analysis of the new hybrid genetic algorithm for job shop scheduling problem”, JCC, vol. 29, no. 2, pp. 159–169, Apr. 2013.
Issue
Section
Computer Science
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.