Convergence analysis of the new hybrid genetic algorithm for job shop scheduling problem

Lục Trí Tuyên, Nguyễn Hữu Mùi, Vũ Đình Hòa
Author affiliations

Authors

  • Lục Trí Tuyên Phòng Thống kê tính toán - Ứng dụng, Viện Công nghệ Thông tin, Viện Khoa học và công nghệ Việt Nam
  • Nguyễn Hữu Mùi Khoa Công nghệ Thông tin, Đại học Sư Phạm Hà Nội.
  • Vũ Đình Hòa Khoa Công nghệ Thông tin, Đại học Sư Phạm Hà Nội.

DOI:

https://doi.org/10.15625/1813-9663/29/2/1260

Keywords:

Job shop scheduling, genetic algorithm, global convergence, Markov chain

Abstract

In the recent our paper, we proposed a new hybrid genetic algorithm (NHGA) for the job shop scheduling problem (JSP). The method of encoding we used was Natural coding instead of traditional binary coding. This manner of coding has a lot of advantages but its convergence is still an open issue for years. This paper analyzes the convergence properties of the NHGA by applied properties of  Markov chain. Based on the Markov chain analysis of genetic algorithm, we point out the proposed method leads to convergence to the global optimum in case of Natural coding.

Metrics

Metrics Loading ...

Published

21-04-2013

How to Cite

[1]
L. T. Tuyên, N. H. Mùi, and V. Đình Hòa, “Convergence analysis of the new hybrid genetic algorithm for job shop scheduling problem”, JCC, vol. 29, no. 2, pp. 159–169, Apr. 2013.

Issue

Section

Computer Science