Recovery of carbon from rice straw for simlultaneous production of protein, lipid and carbohydate by Scenedesmus sp. via mixotrophic cultivation

Do Thi Cam Van, Pham Thi Mai Huong
Author affiliations


  • Do Thi Cam Van HaUI Institute of Technology, Ha Noi University of Industry, 298 Cau Dien, Bac Tu Liem, Ha Noi 100000, Viet Nam
  • Pham Thi Mai Huong Faculty of Chemical Technology, Ha Noi University of Industry, 298 Cau Dien, Bac Tu Liem, Ha Noi 100000, Viet Nam



Biomass production, Carbon, protein, Rice straw hydrolysate, Scenedesmus sp.


Rice straw is abundantly generated as a by-product of agriculture in Vietnam. However, the material mainly contains hemicellulose and cellulose, which can be hydrolyzed to reducing sugars as a carbon source for mixotrophic production of protein-rich microalgae biomass. In this study, rice straw was obtained from local farmer and transformed to hydrolysate via separated alkaline or acid and sequential alkaline-acid treatments to evaluate sugar conversion efficiency. The hydrolysate then was used as a carbon source for cultivation of Scenedesmus sp. via mixotrophic mode. Data revealed that pretreatment with H2SO4, NaOH and combined NaOH + H2SO4 yielded sugar conversion of 12 – 13%, 11 – 12% and 22%, respectively. Scenedesmus sp. displayed a good growth performance in both rice straw hydrolysates with and without supplement of nitrogen and phosphorous, reaching the maximal optical density of 1.5 Abs in culture medium of BG-11 with 10 – 50% v/v hydrolysate. The sugar utilization efficiency by Scenedesmus sp. was determined as 70 – 94%. The Scenedesmus sp. was assayed to be rich in protein with its content of up to 45% based on dry basis. The Scenedesmus sp. biomass is potential protein source for animal and aquafeed formulation. Our preliminary results demonstrated that recovery carbon from agricultural by-product for protein-rich material for novel food development in animal food and aquafeed industries is promising.


Download data is not yet available.


Nguyen H. S., Bui T. P. L. and Ngo D. M. - Sustainable rice straw management in Vietnam: Current situation, challenges and potential. J. Vietnam Agric. Sci. Technol. 1 (3) (2018) 113-120.

Nguyen H. V., Nguyen C. D., Tran T. V., Hau H. D., Nguyen N. T. and Gummert M. - Energy efficiency, greenhouse gas emissions, and cost of rice straw collection in the mekong river delta of vietnam. Field Crops Res. 198 (2016) 16-22. DOI:

Wang X., Yang Z., Liu X., Huang G., Xiao W. and Han L. - The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag. 110 (2020) 87-97. DOI:

Le T. M., Tran U. P. N., Duong Y. H. P., Nguyen Q. D., Tran V. T., Mai P. T. and Le P. K. - Sustainable bioethanol and value-added chemicals production from paddy residues at pilot scale. Clean Technol. Environ. Policy. 24 (1) (2022) 185-197. DOI:

Do N. H., Pham H. H., Le T. M., Lauwaert J., Diels L., Verberckmoes A., Do N. H. N., Tran V. T. and Le P. K. - The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw. Sci. Rep. 10 (1) (2020) 21263. DOI:

Do C. V. T., Lam V. T., Nguyen P. D. T., Tran D. T., Ngo Q. A. and Le T. G. - Recovery of carbon from rice straw for production of high-value products by Chlorella sorokiniana TH01 through mixotrophic cultivation. Biochem. Eng. J. 197 (2023) 108966. DOI:

Zhan J., Rong J. and Wang Q. - Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int. J. Hydrogen Energy. 42 (12) (2017) 8505-8517. DOI:

Olguin E. J., Sanchez G. G., Arias O., Melo F. J., Gonzalez P. R. E., Cruz L., Philippis D. R. and Adessi A. - Microalgae-based biorefineries: Challenges and future trends to produce carbohydrate enriched biomass, high-added value products and bioactive compounds. Biology (Basel). 11 (8) (2022). DOI:

Manzoor M., Ahmad Q. A., Aslam A., Jabeen F., Rasul A., Schenk P. M. and Qazi J. I. - Mixotrophic cultivation of Scenedesmus dimorphus in sugarcane bagasse hydrolysate. Environ Prog Sustain. 39 (2) (2020) e13334. DOI:

Saadaoui I., Rasheed R., Aguilar A., Cherif M., Al Jabri H., Sayadi S. and Manning S. R. - Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. J Anim Sci Biotechnol. 12 (1) (2021) 76. DOI:

Yang S., Liu G., Meng Y., Wang P., Zhou S. and Shang H. - Utilization of xylose as a carbon source for mixotrophic growth of Scenedesmus obliquus. Bioresour. Technol. 172 (2014) 180-185. DOI:

Do C. V. T., Nguyen N. T. T., Pham M. H. T., Pham T. Y. T., Ngo V. G., Giang Le T. and Tran T. D. - Central composite design for simultaneously optimizing biomass and lutein production by a mixotrophic Chlorella sorokiniana TH01. Biochem. Eng. J. 177 (2022) 108231. DOI:

Sluiter J. B., Ruiz R. O., Scarlata C. J., Sluiter A. D. and Templeton D. W. - Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58 (16) (2010) 9043-9053. DOI:

Rosado M. J., Marques G., Rencoret J., Gutierrez A. and Del Rio J. C. - Chemical composition of lipophilic compounds from rice (Oryza sativa) straw: An attractive feedstock for obtaining valuable phytochemicals. Front Plant Sci. 13 (2022) 868319. DOI:

Jabeen S., Gao X., Altarawneh M., Hayashi J.i., Zhang M. and Dlugogorski B. Z. - Analytical procedure for proximate analysis of algal biomass: Case study for Spirulina platensis and Chlorella vulgaris. Energ Fuel. 34 (1) (2020) 474-482. DOI:

Tewari H. K., Marwaha S. S., Kennedy J. F. and Singh L. - Evaluation of acids and cellulase enzyme for the effective hydrolysis of agricultural lignocellulosic residues. J. Chem. Technol. Biotechnol. 41 (4) (1988) 261-275. DOI:

Tran D. T., Ta T. N., Do T. H. N., Pham T. M., Doan T. B. H., Mai T. H. T., Do T. C. V., Le T. G. and Nguyen V. T. - Developing a mini biodiesel production line via sequential conversion to purification from Scenedesmus acuminatus S4 grown in domestic wastewater. J. Chem. Technol. Biotechnol. 95 (8) (2020) 2159-2170. DOI:

Kim D. H., Jo I. S., Kang B. J., Lee B. D., Kumar S., Kim S. H. and Yoon J. J. - Evaluation of bio-hydrogen production using rice straw hydrolysate extracted by acid and alkali hydrolysis. International Int. J. Hydrogen Energy. 47 (88) (2022) 37385-37393. DOI:

Tsegaye B., Balomajumder C. and Roy P. - Alkali delignification and Bacillus sp. BMP01 hydrolysis of rice straw for enhancing biofuel yields. Bull Natl Res Cent. 43 (1) (2019). DOI:

Ashoor S., Mallapureddy K. K. and Sukumaran R. K. - Sequential mild acid and alkali pretreatment of rice straw to improve enzymatic saccharification for bioethanol production. Prep Biochem Biotech. 53 (3) (2023) 231-238. DOI:

Zhang T.Y., Wu Y.H., Wang J.H., Wang X.X., Deantes-Espinosa V. M., Dao G.H., Tong X. and Hu H.Y. - Heterotrophic cultivation of microalgae in straw lignocellulose hydrolysate for production of high-value biomass rich in polyunsaturated fatty acids (PUFA). J. Chem. Eng. 367 (2019) 37-44. DOI:

El-Gamal A. D., Khedr F. G., Tohamy E. Y. and Abouelwafa A. M. - Safe technological trend towards the production of bioethanol from algal biomass grown on rice straw. Egypt. J. Phycology. 20 (1) (2019) 51-83. DOI:

Kusmayadi A., Leong Y. K., Yen H. W., Huang C. Y. and Chang J. S. - Microalgae as sustainable food and feed sources for animals and humans - Biotechnological and environmental aspects. Chemosphere. 271 (2021) 129800. DOI:

Zhu Z., Sun J., Fa Y., Liu X. and Lindblad P. - Enhancing microalgal lipid accumulation for biofuel production. Front Microbiol. 13 (2022) 1024441. DOI:

Banerjee S., Das D., Atta A. and Shanmugam P. - Chapter 12 - Obtaining commodity chemicals by bio-refining of algal biomass. in Algae and Aquatic Macrophytes in Cities. Elsevier, 2022, pp. 261-270. DOI:




How to Cite

Do Thi Cam Van and Pham Thi Mai Huong, “Recovery of carbon from rice straw for simlultaneous production of protein, lipid and carbohydate by Scenedesmus sp. via mixotrophic cultivation”, Vietnam J. Sci. Technol., vol. 61, no. 4, Jun. 2024.