A new method of failure analysis

Sergei Alexandrov, Marina Rynkovskaya, Ismet Bajmuratov, Ruslan Kalistratov, Ivan Pylkin
Author affiliations

Authors

  • Sergei Alexandrov Ishlinsky Institute for Problems in Mechanics RAS, 101-1 Prospect Vernadskogo, Moscow 119526, Russia https://orcid.org/0000-0003-4789-6556
  • Marina Rynkovskaya Department of Civil Engineering, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russia https://orcid.org/0000-0003-2206-2563
  • Ismet Bajmuratov Department of Civil Engineering, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russia
  • Ruslan Kalistratov Department of Civil Engineering, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russia
  • Ivan Pylkin Department of Civil Engineering, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russia

DOI:

https://doi.org/10.15625/2525-2518/18622

Keywords:

linear yield criterion, plane strain, telegraph equation, failure, equations of motion in matrix forms

Abstract

The present paper develops a new failure analysis method under plane strain conditions considering a generalized linear yield criterion. The yield criterion and the stress equilibrium equations constitute a hyperbolic system of equations. It is shown that two auxiliary variables satisfy the equation of telegraphy. Simple analytical relationships connect these variables and the radii of curvature of the characteristic curves. The calculated radii of curvature allow for the corresponding characteristic net to be constructed. Then, the stress field is determined using another set of analytical relationships. Thus, a numerical procedure is only necessary for solving the equation of telegraphy. This equation can be integrated by the method of Riemann. In particular, Green’s function is the Bessel function of zero order. A simple example illustrates the general method.

Downloads

Download data is not yet available.

References

Hill R., Lee E.H., Tupper S.J. - A method of numerical analysis of plastic flow in plane strain and its application to the compression of a ductile material between rough plates. Trans. ASME J. Appl. Mech., 18 (1951) 46–52. DOI: https://doi.org/10.1115/1.4010219

Hill R. - The mathematical theory of plasticity, Clarendon Press, Oxford (1950).

Thomason P.F. - Riemann-Integral solutions for the plastic slip-line fields around elliptical holes. J. Appl. Mech., 45 (1978) 678–679. https://doi.org/10.1115/1.3424381. DOI: https://doi.org/10.1115/1.3424381

Sadowsky M.A. - Equiareal pattern of stress trajectories in plane plastic strain. ASME J. Appl. Mech., 63 (1941) A74-A76. https://doi.org/10.1115/1.4009104. DOI: https://doi.org/10.1115/1.4009104

Cox G.M., Thamwattana N., McCue S.W., Hill J.M. - Coulomb–Mohr granular materials: quasi-static flows and the highly frictional limit. ASME Appl. Mech. Rev., 61(6) (2008) 060802. https://doi.org/10.1115/1.2987874. DOI: https://doi.org/10.1115/1.2987874

Liu P., Shen Y., Meng M., Luo S., Zhong Y., Cen Q. - Experimental study of mechanical properties and fracture characteristics of conglomerates based on Mohr–Coulomb criteria. Journal of Marine Science and Engineering, 11(6) (2023) 1219. https://doi.org/10.3390/jmse11061219. DOI: https://doi.org/10.3390/jmse11061219

Liu H., Liu J., Zhang S., Feng L., Qiu L. - Experimental study on compression characteristics of fractured soft rock and its Mohr-Coulomb criterion. Theoretical and Applied Fracture Mechanics, 125 (2023) 103820. https://doi.org/10.1016/j.tafmec.2023.103820. DOI: https://doi.org/10.1016/j.tafmec.2023.103820

Yao N., Deng X., Luo B., Oppong F., Li P. - Strength and failure mode of expansive slurry-inclined layered rock mass composite based on Mohr–Coulomb criterion. Rock Mech. Rock Eng., 56 (2023) 3679–3692. https://doi.org/10.1007/s00603-023-03244-z. DOI: https://doi.org/10.1007/s00603-023-03244-z

Zhou J., Li C., Asteris P.G., Shi X., Armaghani D.J. - Chart-based granular slope stability assessment using the modified Mohr–Coulomb criterion. Arab. J. Sci. Eng., 48 (2023) 5549–5569. https://doi.org/10.1007/s13369-022-07478-x. DOI: https://doi.org/10.1007/s13369-022-07478-x

Tian D., Zheng H. - The generalized Mohr-Coulomb failure criterion. Applied Sciences, 13(9) (2023) 5405. https://doi.org/10.3390/app13095405. DOI: https://doi.org/10.3390/app13095405

Zhao Y., Mishra B., Shi Q., Zhao G. - Size-dependent Mohr–Coulomb failure criterion. Bull. Eng. Geol. Environ., 82 (2023) 218. https://doi.org/10.1007/s10064-023-03243-y. DOI: https://doi.org/10.1007/s10064-023-03243-y

Zhang S., Wu X., Yang M., Ren P., Meng X. - Simulation of fracture performance of die-cast A356 aluminum alloy based on modified Mohr–Coulomb model. Applied Sciences, 13(11) (2023) 6456. https://doi.org/10.3390/app13116456. DOI: https://doi.org/10.3390/app13116456

Druyanov B. - Technological mechanics of porous bodies, Clarendon Press, New York (1993).

Altenbach H., Kolupaev V., Yu M. - Yield criteria of hexagonal symmetry in the π-plane. Acta Mech., 224 (2013) 1527-1540. https://doi.org/10.1007/s00707-013-0830-5. DOI: https://doi.org/10.1007/s00707-013-0830-5

Manola M.M.S., Koumousis V.K. - Ultimate state of plane frame structures with piecewise linear yield conditions and multi-linear behavior: a reduced complementarity approach. Comp. Struct., 130 (2014) 22-33. https://doi.org/10.1016/j.compstruc.2013.09.003. DOI: https://doi.org/10.1016/j.compstruc.2013.09.003

Alexandrov S. - Geometry of plane strain characterisctic fields in pressure-dependent plasticity. ZAMM, 95(11) (2015) 1296-1301. https://doi.org/10.1002/zamm.201400017. DOI: https://doi.org/10.1002/zamm.201400017

Aleksandrov S.E., Lyamina E.A. - Riemann method for the plane strain of a homogeneous porous plastic material. Mech. Solids, 50(2) (2015) 171-175. https://doi.org/10.3103/S0025654415020065. DOI: https://doi.org/10.3103/S0025654415020065

Alexandrov S.E., Lyamina E.A. - A new method of calculating the state of stress in granular materials under plane strain conditions. Transportation Systems and Technology, 3(4) (2017) 89-106. https://doi.org/10.17816/transsyst20173489-106. DOI: https://doi.org/10.17816/transsyst20173489-106

Alexandrov S., Rynkovskaya M., Tsai S.-N. - Application of the generalized method of moving coordinates to calculating stress fields near an elliptic hole. Materials, 15 (2022) Article 6266. https://doi.org/10.3390/ma15186266. DOI: https://doi.org/10.3390/ma15186266

Alexandrov S., Harris D. - Geometry of principal stress trajectories for a Mohr-Coulomb material under plane strain. ZAMM, 97(4) (2017) 473-476. DOI: https://doi.org/10.1002/zamm.201500284

Alexandrov S., Date P. - A general method of stress analysis for a generalized linear yield criterion under plane strain and plane stress. Cont. Mech. Therm., 31(3) (2019) 841-849. https://doi.org/10.1007/s00161-018-0743-6. DOI: https://doi.org/10.1007/s00161-018-0743-6

Alexandrov S., Lyamina E., Jeng Y.-R. - A general stress solution in a plastic region near a traction-free boundary of arbitrary shape under plane-strain conditions. Cont. Mech. Thermodyn., 35 (2023) 121-139. https://doi.org/10.1007/s00161-022-01173-w. DOI: https://doi.org/10.1007/s00161-022-01173-w

Zerbst U., Madia M. - Analytical flaw assessment. Engineering Fracture Mechanics, 187 (2018) 316-367. https://doi.org/10.1016/j.engfracmech.2017.12.002. DOI: https://doi.org/10.1016/j.engfracmech.2017.12.002

Dilman V.L., Dheyab A.N. - Critical states of thin underlayers under tensile afford. Journal of Computational and Engineering Mathematics, 5(4) (2018) 3-15. DOI:10.14529/jcem180401. DOI: https://doi.org/10.14529/jcem180401

Alexandrov S., Lyamina E., Jeng Y.-R. - Effect of weld geometry on the limit load of a cracked specimen under tension. Mechanics Based Design of Structures and Machines (2023). https://doi.org/10.1080/15397734.2023.2165100. DOI: https://doi.org/10.1080/15397734.2023.2165100

Downloads

Published

23-02-2024

How to Cite

[1]
S. Alexandrov, M. Rynkovskaya, I. Bajmuratov, R. Kalistratov, and I. Pylkin, “A new method of failure analysis”, Vietnam J. Sci. Technol., vol. 62, no. 1, pp. 170–183, Feb. 2024.

Issue

Section

Mechanical Engineering - Mechatronics