Modern software capabilities for shape optimization of shells

Author affiliations




Shape optimization , gradient-based method, helicoid, maximum displacement, filter radius


The article is devoted to the shape optimization of shell structures in Comsol Multiphysics using three gradient-based methods: IPOPT (Interior Point OPTimizer), SNOPT (Sparse Nonlinear OPTimizer) and MMA or GCMMA (the Method of Moving Asymptotes). Two types of complex shapes, such as right helicoid and developable helicoid are taken for the computational experiment. The task is to investigate the initial design and optimization process of two helicoids. To obtain a more accurate result and an interesting design solution, the calculation is carried out using three physics-controlled mesh sizes: extra coarse, fine and extra fine with varying values of special optimization settings, such as maximum displacement (dmax) and filter radius (Rmin). The results obtained using the three methods allow to conclude that the mesh element size and studied parameters dmax and Rmin have a significant impact on the final optimization result.


Download data is not yet available.


Ramani H.B., Kumar N. - Using Shape Optimization Tool in Ansys Software For Weight Reducation Of Steel Connecting Rod, International Journal of Engineering Research & Technology (IJERT) 2 (2013) 1-5.

Jeevanantham A. K., Pandivelan C. - Topology and shape optimization of gear casing using finite element and tagushi based statistical analyses, ARPN Journal of Engineering and Applied Sciences 11 (2016) 13721-13734.

Ermakova E., Elberdov T., Rynkovskaya M. - Shape Optimization of a Shell in Comsol Multiphysics, Computation 10 (2022) 1-22. DOI:

Souza M., Pauletti R. M. - Proceedings of the IASS Annual Symposium, Kawaguchi K., Ohsaki M., Takeuchi T. (2016) 1-10.

Nasasira D., Srivastava A. K. - Effect of Mesh Size on Soil-Structure Interaction in Finite Element Analysis, International journal of engineering research and technology (IJERT) 9 (2020) 802-807. DOI:

Andhale A., Pande D. W. - Mesh Insensitive Structural Stress Approach for Welded Components Modeled using Shell Mesh, International journal of engineering research and technology (IJERT) 3 (2014) 1425-1434.

Shukla V., Singh M. P., Srivastava A. K. - Meshing technique in FEA for complex shape model and result optimization. International Journal Of Advance Research, Ideas And Innovations In Technology (IJARIIT) 5 (2019) 455-462.

Kosala B., Fehmi C. - Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces, Computer-aided Design 95 (2018) 62-71. 10.1016/J.CAD.2017.09.006. DOI:

Querin O.M., Victoria M., Alonso C., Ansola R., Marti P. -Topology Design Methods for Structural Optimization, Elsevier Ltd (2017). DOI:

Jang G., Kambampati S., Chung H., Kim H. - Configuration Optimization for Thin Structures Using Level Set Method, Structural and Multidisciplinary Optimization 59 (2019) 1-34. DOI:

Montoya-Zapata D., Acosta D. A., Moreno A., Posada J., Ruiz-Salguero O. - Spanish Computer Graphics Conference (CEIG), Jarabo A. and Casas D. (2019) 1-10.

Najian Asl R., Bletzinger K. - Implicit bulk-surface filtering method for node-based shape optimization and comparison of explicit and implicit filtering techniques, Structural and Multidisciplinary Optimization 66 (2022) 1-14. DOI:

Krivoshapko S. N., Ivanov V. N. - Encyclopedia of Analytical Surfaces, Springer International Publishing, Cham, Switzerland, 2015. DOI:

Somarriba Sokolova L. N., Rodriguez Infante D. L., Jean Paul V., Ermakova E. - Helical surfaces and their application in engineering design, International Journal of Advanced Science and Technology 29 (2020) 1839-1846.

Rynkovskaya M. I., Ivanov V. N. - Analytical method to analyze right helicoid stress-strain. Adv Struct Mater. Springer International Publishing,92 (2019) 157-171. DOI:

Krivoshapko S.N.,Rynkovskaya M.I. - Five types of Ruled Helical Surfaces for Helical Conveyers, Support Anchors and Screws, MATEC Web of Conferences 95 (2017) 1-5. DOI:

WächterA. - Short Tutorial: Getting Started with Ipopt in 90 Minutes, In Proceedings of the Dagstuhl Seminar, Dagstuhl, Germany, 2009, pp. 1-17.

Gill P. E., Murray W., Saunders M. A. - SNOPT: An SQP Algorithm for Large-scale Constrained Optimization, SIAM J. Optim. 12 (2002) 979-1006. /S0036144504446096. DOI:

Optimization Module User’s Guide. URL: help.opt/OptimizationModuleUsersGuide.pdf.




How to Cite

M. Rynkovskaya and E. Ermakova, “Modern software capabilities for shape optimization of shells”, Vietnam J. Sci. Technol., vol. 62, no. 1, pp. 184–194, Feb. 2024.



Mechanical Engineering - Mechatronics