Eco-friendly method of biocementation for soil improvement and environmental remediation in the context of Viet Nam: a state-of-the-art review

Nguyen Ngoc Tri Huynh, Nguyen Pham Huong Huyen, Hoang Thien Khoi Nguyen, Nguyen Khanh Son
Author affiliations


  • Nguyen Ngoc Tri Huynh Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Nguyen Pham Huong Huyen Department of Biotechnology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
  • Hoang Thien Khoi Nguyen Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Nguyen Khanh Son Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam



biocementation, microorganisms, sustainable, stabilization


Scientists have been using microorganisms to improve soil strength and durability through a process called biocementation. This technique involves inducing mineral precipitation to form a cement-like material that enhances soil properties. Biocementation has been successful in various applications, including soil stabilization, erosion control, and groundwater remediation. Researchers are optimizing nutrient concentrations and ratios to create a favorable environment for microbial activity and promote efficient mineral formation. Different microorganisms have varying abilities to induce mineralization, and cycle treatments have shown promise in stimulating biomineralization processes. Biocementation is a sustainable and eco-friendly technique that can stabilize and immobilize contaminants in soil and groundwater, preventing the spread of pollutants. Despite these challenges, biocementation holds great potential for innovative soil improvement and environmental remediation. Recent studies, experiments, testing devices, and results from research groups in the world and Vietnam in recent years were reviewed to gain insight into this promising approach. Ongoing research aims to develop cost-efficient and sustainable methods for large-scale production and application of biocementing agents. Further research is needed to uncover the intricate mechanisms and identify optimal strategies for applications and environmental conditions.


Download data is not yet available.


Abo-El-Enein S. A., Ali A. H., Talkhan F. N., Abdel-Gawwad H. A. - Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal, 8 (2012) 185–192. DOI:

Dong W., Li W., Shen L., Zhang S., Vessalas K. - Integrated self-sensing and self-healing cementitious composite with microencapsulation of nano-carbon black and slaked lime. Materials Letters, 282 (2021) DOI:

Huynh N. N. T., Phuong N. M., Toan N. P. A., Son N. K. - Bacillus subtilis HU58 Immobilized in micropores of diatomite for using in self-healing concrete. Procedia engineering, 171 (2017) 598–605. DOI:

Putri P. Y., Ujike I., Kawaai K. - In MATEC Web of Conferences; EDP Sciences, 2019; Vol. 258, 01013. DOI:

Seifan M., Berenjian A. - Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied microbiology and biotechnology, 103 (2019) 4693–4708. DOI:

Singh P., Kaur I., Singh N. - A review of different bacteria carriers used in self-healing mechanism. Materials Today: Proceedings, (2020) DOI:

Huynh N. N. T., Imamoto K.-i., Kiyohara C. - A Study on Biomineralization using Bacillus Subtilis Natto for Repeatability of Self-Healing Concrete and Strength Improvement. Journal of Advanced Concrete Technology, 17 (2019) 700-714. DOI:

Aytekin B., Mardani A., Yazıcı Ş. - State-of-art review of bacteria-based self-healing concrete: Biomineralization process, crack healing, and mechanical properties. Construction and Building Materials, 378 (2023) 131198. DOI:

Althoey F., Zaid O., Arbili M. M., Martínez-García R., Alhamami A., Shah H. A., Yosri A. M. - Physical, strength, durability and microstructural analysis of self-healing concrete: A systematic review. Case Studies in Construction Materials, 18 (2023) e01730. DOI:

Nguyen M.-T., Fernandez C. A., Haider M. M., Chu K.-H., Jian G., Nassiri S., Zhang D., Rousseau R., Glezakou V.-A. - Toward Self-Healing Concrete Infrastructure: Review of Experiments and Simulations across Scales. Chemical Reviews, (2023) DOI:

Raza A., El Ouni M. H., Azab M., Khan D., Elhadi K. M., Alashker Y. - Sustainability assessment, structural performance and challenges of self-healing bio-mineralized concrete: A systematic review for built environment applications. Journal of Building Engineering, (2023) 105839. DOI:

Garg R., Garg R., Eddy N. O. - Microbial induced calcite precipitation for self-healing of concrete: a review. Journal of Sustainable Cement-Based Materials, (2022) 1–14. DOI:

Luhar S., Luhar I., Shaikh F. U. A. - A review on the performance evaluation of autonomous self-healing bacterial concrete: mechanisms, strength, durability, and microstructural properties. Journal of Composites Science, 6 (2022) 23. DOI:

Huynh N. N. T., Imamoto K.-i., Kiyohara C. - Biomineralization Analysis and Hydration Acceleration Effect in Self-healing Concrete using Bacillus subtilis natto. Journal of Advanced Concrete Technology, 20 (2022) 609-623. DOI:

Mujah D., Shahin M. A., Cheng L. - State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34 (2017) 524–537. DOI:

Kalkan E. - A review on the microbial induced carbonate precipitation MICP for soil stabilization. International Journal of Earth Sciences Knowledge and Applications, 2 (2020) 38–47.

Xu F., Wang D. - Review on Soil Solidification and Heavy Metal Stabilization by Microbial-Induced Carbonate Precipitation (MICP) Technology. Geomicrobiology Journal, (2023) 1–16. DOI:

Wang Y., Konstantinou C., Tang S., Chen H. - Applications of microbial-induced carbonate precipitation: A state-of-the-art review. Biogeotechnics, (2023) 100008. DOI:

Patil M., Dalal P. H., Salifu E., Iyer K. K. R., Dave T. N. - Biostabilization of soils as sustainable pathway for anti-desertification: Present and future perspectives. Materials Today: Proceedings, (2023) DOI:

Gowthaman S., Koizumi H., Nakashima K., Kawasaki S. - Field experimentation of bio-cementation using low-cost cementation media for preservation of slope surface. Case Studies in Construction Materials, 18 (2023) e02086. DOI:

Chen M., Gowthaman S., Nakashima K., Kawasaki S. - Influence of humic acid on microbial induced carbonate precipitation for organic soil improvement. Environmental Science and Pollution Research, 30 (2023) 15230–15240. DOI:

Achal V., Mukherjee A., Kumari D., Zhang Q. - Biomineralization for sustainable construction–A review of processes and applications. Earth-science reviews, 148 (2015) 1–17. DOI:

Beatty D. N., Williams S. L., Srubar Iii W. V. - Biomineralized Materials for Sustainable and Durable Construction. Annual Review of Materials Research, 52 (2022) 411–439. DOI:

Omoregie A. I., Palombo E. A., Nissom P. M. - Bioprecipitation of calcium carbonate mediated by ureolysis: A review. Environmental Engineering Research, 26 (2021) DOI:

Kaur G., Dhami N. K., Goyal S., Mukherjee A., Reddy M. S. - Utilization of carbon dioxide as an alternative to urea in biocementation. Construction and Building Materials, 123 (2016) 527–533. DOI:

Charpe A. U., Latkar M. V., Chakrabarti T. - In Proceedings of the institution of civil engineers-engineering sustainability; Thomas Telford Ltd, 2018; Vol. 172, 438–449. DOI:

Pedley M. - Freshwater (phytoherm) reefs: the role of biofilms and their bearing on marine reef cementation. Sedimentary Geology, 79 (1992) 255–274. DOI:

Ta X. H., Abbasi B., Muhunthan B., Noh D.-H., Kwon T.-H. - Low-frequency seismic responses during microbial biofilm formation in sands. Environmental Geotechnics, 9 (2021) 524–533. DOI:

Li F., Li X., Ye L., Liu X., Zhu J., Yang S., Yan Y., Xu L., Yan J. - A genetically engineered composite biofilm for microbial induced calcium carbonate precipitation by synergic effect of urease, protein adhesive and xanthan gum. Journal of Environmental Chemical Engineering, 10 (2022) 108431. DOI:

Yang J., Pan X., Zhao C., Mou S., Achal V., Al-Misned F. A., Mortuza M. G., Gadd G. M. - Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiology Journal, 33 (2016) 261–266. DOI:

Zhao Y., Yao J., Yuan Z., Wang T., Zhang Y., Wang F. - Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research, 24 (2017) 372–380. DOI:

Gowthaman S., Iki T., Nakashima K., Ebina K., Kawasaki S. - Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region. SN Applied Sciences, 1 (2019) 1480. DOI:

Achal V., Pan X., Lee D.-J., Kumari D., Zhang D. - Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93 (2013) 1352-1358 %U DOI:">

Mwandira W., Nakashima K., Kawasaki S., Ito M., Sato T., Igarashi T., Banda K., Chirwa M., Nyambe I., Nakayama S., Ishizuka M. - Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp. Environmental Science and Pollution Research, 26 (2019) 15653-15664 %U DOI:">

Gowthaman S., Mohsenzadeh A., Nakashima K., Kawasaki S. - Removal of ammonium by-products from the effluent of bio-cementation system through struvite precipitation. Materials Today: Proceedings, 61 (2022) 243-249 %U DOI:">

DeJong J. T., Soga K., Banwart S. A., Whalley W. R., Ginn T. R., Nelson D. C., Mortensen B. M., Martinez B. C., Barkouki T. - Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. Journal of the Royal society Interface, 8 (2011) 1–15. DOI:

Al Qabany A., Soga K. - Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique, 63 (2013) 331. DOI:

Cheng L., Cord-Ruwisch R., Shahin M. A. - Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50 (2013) 81–90. DOI:

Chu J., Ivanov V., Stabnikov V., Li B. - In Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symposium in Print 2013; ICE Publishing, 2014, 215–219. DOI:

Achal V., Mukherjee A. - A review of microbial precipitation for sustainable construction. Construction and Building Materials, 93 (2015) 1224–1235. DOI:

Ivanov V., Stabnikov V. - Construction biotechnology: biogeochemistry, microbiology and biotechnology of construction materials and processes. Springer,(2016)

e Portugal C. R. M., Fonyo C., Machado C. C., Meganck R., Jarvis T. - Microbiologically Induced Calcite Precipitation biocementation, green alternative for roads–is this the breakthrough? A critical review. Journal of Cleaner Production, 262 (2020) 121372. DOI:

Dubey A. A., Ravi K., Mukherjee A., Sahoo L., Abiala M. A., Dhami N. K. - Biocementation mediated by native microbes from Brahmaputra riverbank for mitigation of soil erodibility. Scientific reports, 11 (2021) 1–15. DOI:

Joshi S., Goyal S., Reddy M. S. - Influence of nutrient components of media on structural properties of concrete during biocementation. Construction and Building Materials, 158 (2018) 601–613. DOI:

Cheng L., Shahin M. A.- Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization; Springer (2019) 47–68. DOI:

Kang B., Zha F., Deng W., Wang R., Sun X., Lu Z. - Biocementation of pyrite tailings using microbially induced calcite carbonate precipitation. Molecules, 27 (2022) 3608. DOI:

Fu T., Saracho A. C., Haigh S. K. - Microbially induced carbonate precipitation (micp) for soil strengthening: a comprehensive review. Biogeotechnics, (2023) 100002. DOI:

Omoregie A. I., Muda K., Ong D. E. L., Ojuri O. O., Bakri M. K. B., Rahman M. R., Basri H. F., Ling Y. E. - Soil bio-cementation treatment strategies: state-of-the-art review. Geotechnical Research, 40 (2023) 1–25. DOI:

Fouladi A. S., Arulrajah A., Chu J., Horpibulsuk S. - Application of Microbially Induced Calcite Precipitation (MICP) technology in construction materials: A comprehensive review of waste stream contributions. Construction and Building Materials, (2023) 131546. DOI:

Baidya P., Dahal B. K., Pandit A., Joshi D. R. - Bacteria-Induced Calcite Precipitation for Engineering and Environmental Applications. Advances in Materials Science and Engineering, 2023 (2023) DOI:

Chen M., Gowthaman S., Nakashima K., Takano C., Kawasaki S. - Baseline investigation on soil solidification through biocementation using airborne bacteria. Frontiers in Bioengineering and Biotechnology, 11 (2023) 1216171. DOI:

Harran R., Terzis D., Laloui L. - Mechanics, Modeling, and Upscaling of Biocemented Soils: A Review of Breakthroughs and Challenges. International Journal of Geomechanics, 23 (2023) 03123004. DOI:

Van P. L. A. - Biogrout, ground improvement by microbial induced carbonate precipitation. Delft University of Technology, (2009)

Duraisamy Y.-Strength and stiffness improvement of bio-cemented Sydney sand. 2016.

Yadav A. N., Verma P., Kumar S., Kumar V., Kumar M., Sugitha T. C. K., Singh B. P., Saxena A. K., Dhaliwal H. S. -; Elsevier, 2018.

Rezasoltani S.-Biostabilization of mine tailings for improving wind erosion resistance. 2023.

Yu-jie L. I., Zhen G. U. O., Yi-long L. I., Sheng-jie R. U. I., Yong-qiang Z. H. U. - Advances in MICP reinforcement technology used in island engineering. 工程科学学报, 45 (2023) 819–832.

Zeng H., Yin L.-Y., Tang C.-S., Zhu C., Cheng Q., Li H., Lv C., Shi B. - Tensile behavior of bio-cemented, fiber-reinforced calcareous sand from coastal zone. Engineering Geology, 294 (2021) 106390. DOI:

He J., Liu Y., Liu L., Yan B., Li L., Meng H., Hang L., Qi Y., Wu M., Gao Y. - Recent development on optimization of bio-cementation for soil stabilization and wind erosion control. Biogeotechnics, (2023) 100022. DOI:

Gao Y., Hua C., Ke T. - Field Test on Soybean-Urease Induced Calcite Precipitation (SICP) for Desert Sand Stabilization against the Wind-Induced Erosion. Sustainability, 14 (2022) 15474. DOI:

Chen M., Gowthaman S., Nakashima K., Kawasaki S. - Evaluating Mechanical Strength of Peat Soil Treated by Fiber Incorporated Bio-Cementation. (2021) DOI:

Micaelo R., Faria P., Cardoso R.- New Trends on Bio-cementation and Self-healing Testing; Springer (2023) 3–28. DOI:

Jgs. -; Japanese Geotechnical Society Tokyo, 2012.

Rabat Á., Cano M., Tomás R., Tamayo Á. E., Alejano L. R. - Evaluation of strength and deformability of soft sedimentary rocks in dry and saturated conditions through needle penetration and point load tests: a comparative study. Rock Mechanics and Rock Engineering, 53 (2020) 2707–2726. DOI:

Nguyen H. N. T., Nguyen-Phung A. T., Nguyen K. S. -: Vietnam %* All rights reserved, 2016.

Huynh N. N. T., Nhu N. Q., Son N. K. - In IOP Conference Series: Materials Science and Engineering; IOP Publishing, 2018; Vol. 431, 062006 DOI:

Huynh N. N. T., Son N. K., Tu T. A. Soil-sand stabilization and improvement through microbial induced CaCO3 precipitation using Bacillus subtilis: Ho Chi Minh city, Vietnam, 2019;

Huynh N. N. T., Tu T. A., Huyen N. P. H., Son N. K. - Lab-scale experiments for soil cementing through bio-chemical process. ASEAN Engineering Journal, 11 (2021) 255-265 DOI:

Nguyen Ngoc Tri Huynh N. K. S., Nguyen Pham Huong Huyen, Le Van Quang, Tran Anh Tu - Improving Ground Stability Through Biocementation Technique with Sand and Discrete Particle Materials Inspired by Microbiologically Induced Calcite Precipitation (Xử lý ổn định nền đất yếu bằng phương pháp xi-măng hoá cát và các hạt vật liệu rời rạc trên cơ sở quá trình tạo khoáng CaCO3 từ vi sinh vật). National Steering Committee for Disaster Prevention and Control (Tổng cục Phòng chống thiên tai - Bộ Nông nghiệp và Phát triển nông thôn), Ha Noi, (2021) 134-141.

Pham Cong Ly N. N. T. H., Nguyen Pham Huong Huyen, Nguyen Khanh Son - A constructive model of soil bio-cementing by using expanded glass granules. Vietnam Journal of Science and Technology, 59 (2021) 115-124. DOI:

Huyen N. P. H., Huynh N. N. T., Son N. K., Phuong N. T. N., Tuan P. M. - Developing The Bio-Grout of Repairing Cracks in Concrete Based on Microbially Induced Calcium Carbonate Precipitation Using Sporosarcina Pasteurii. Journal of Science Technology and Food, 21 (2021) 20–30.

Huyen N. P. H., Huynh N. N. T. - Bio-cementation by using microbially induced carbonate precipitation technique by using sporosarcina pasteurii with oxidizing agent supplements. Journal of Materials & Construcstion, 11 (2021) 13-15.

Thanh H. D., Phuong T. H. - Application of biocement for solidifying sandy soil. Journal of Materials & Construcstion, 12 (2022)

Huyen N. P. H., Huynh N. N. T. - Bio-cementation by using microbially induced carbonate precipitation technique by using sporosarcina pasteurii with oxidizing agent supplements. Journal of Materials & Construcstion, 11 (2021) DOI:

Phuong T. H., Quoc A. N. L., Huu H. N., Minh X. N. T. - Developing bio-cement using agricultural sources to reduce CO2 emissions in civil construction. Journal of Materials & Construcstion, 13 (2023) 37-46




How to Cite

N. T. H. Nguyen, P. H. H. Nguyen, H. T. K. Nguyen, and K. S. Nguyen, “Eco-friendly method of biocementation for soil improvement and environmental remediation in the context of Viet Nam: a state-of-the-art review”, Vietnam J. Sci. Technol., vol. 61, no. 6, pp. 917–942, Dec. 2023.