Preparation and characterization of Lithium-stabilized Colloidal Silica as a silicate densifier for concrete surface treatment

Author affiliations

Authors

  • Nguyen Hoang Thien Khoi Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam https://orcid.org/0000-0001-8992-3706
  • Nguyen Ngoc Tri Huynh Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam https://orcid.org/0000-0003-2085-3564
  • Huynh Ngoc Minh Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam https://orcid.org/0000-0002-2565-4129
  • Nguyen Khanh Son Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam https://orcid.org/0000-0002-4173-687X

DOI:

https://doi.org/10.15625/2525-2518/18515

Keywords:

silicate-based densifier, concrete hardener, lithium silicate hardener, colloidal silica, surface treatment

Abstract

Enhancing the durability of concrete by safeguarding it against cracking and environmental deterioration is paramount. While silicate-based densifiers have been instrumental in shielding concrete surfaces from wear and environmental factors, the surging popularity of lithium silicate solutions faces a significant impediment due to the high cost of lithium, mainly attributed to its predominant use in manufacturing lithium batteries. To address this substantial challenge, an intriguing approach involves blending lithium silicate with colloidal silica, potentially offering a cost-effective and efficient solution for concrete surface treatment. This study delves into the feasibility of utilizing lithium-stabilized colloidal silica as a silicate densifier, focusing on their preparation, characterization, and efficacy in lab-scale applications. The results demonstrate that lithium-stabilized colloidal silica can heighten surface hardness while concurrently reducing porosity. However, it is worth noting that this approach presents particular challenges, particularly regarding preparation and water resistance, when compared to surfaces treated solely with lithium silicate. Addressing these hurdles holds promise for optimizing and enhancing lithium-stabilized colloidal silica and advancing the concrete surface treatment field in future research endeavours.

Downloads

Download data is not yet available.

References

Neville A. M., Brooks J. J. - Concrete technology, Longman Scientific & Technical, England, 1987.

Pan X., Shi Z., Shi C., Ling T. C., Li N. - A review on concrete surface treatment Part I: Types and mechanisms, Constr. Build. Mater. 132 (2017) 578-590. https://doi.org/10.1016/j.conbuildmat.2016.12.025. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.025

Kim J., Kitagaki R. - Behavior of hydrates in cement paste reacted with silicate-based impregnant, Cem. Concr. Compos. 114 (2020) 103810. https://doi.org/10.1016/j.cemconcomp.2020.103810. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103810

Provis J. L., Van Deventer J. S. - Alkali activated materials: state-of-the-art report, Springer Science & Business Media, Germany, 2013. DOI: https://doi.org/10.1007/978-94-007-7672-2

Kato Y., Someya N. - Effect of silicate-based surface penetrant on concrete durability, in: Grantham M., Muhammed Basheer P. A., Magee B. and Soutsos M. (Eds.), Concrete Solution, Taylor & Francis Group, London, 2014, pp. 393-397. DOI: https://doi.org/10.1201/b17394-61

Hazehara H., Soeda M., Hashimoto S.- Fundamental study on characteristics of silicate based surface penetrants and effects of improvement on concrete structures, in: Furuta H., Frangopol D. and Akiyama M. (Eds.) , Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management, CRC Press, London, 2014, pp. 971-978. DOI: https://doi.org/10.1201/b17618-141

Gransberg D. D., Pittenger D. M. - Maintaining Airport Pavement Friction Using Surface Densification, Proceedings of the 9th International Conference on Managing Pavement Assets, Vol. 9, Washington, 2015.

Zhang H., Zhang Z., Lv J., Zhang G. - Effect of Lithium Silicate–Impregnated Limestone Aggregate on Skid Resistance Properties of Bituminous Mixture, J. Mater. Civ. Eng. 34 (2022) 04022251. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004409. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0004409

Zhang Z., Zhang H., Lv J., Li W. - Performance evaluation of skid-resistant surface treatment using lithium silicate for limestone bituminous pavement, Constr. Build. Mater. 342 (2022) 127990. https://doi.org/10.1016/j.conbuildmat.2022.127990. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127990

Lv J., Wang R. - Literature Review of Shot Blasting and Lithium Silicate Treatment to Improve the Anti-sliding Performance of Asphalt Pavement, Proceedings of the 5th International Conference on Information Science, Computer Technology and Transportation, Vol. 5, Shenyang, 2020, pp. 662-666. DOI: https://doi.org/10.1109/ISCTT51595.2020.00127

Ardalan R. B., Jamshidi N., Arabameri H., Joshaghani A., Mehrinejad M., Sharafi P. - Enhancing the permeability and abrasion resistance of concrete using colloidal nano-SiO2 oxide and spraying nanosilicon practices, Constr. Build. Mater. 146 (2017) 128-135. https://doi.org/10.1016/j.conbuildmat.2017.04.078. DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.078

Hou P., Cheng X., Qian J., Shah S. P. - Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nanoSiO2 and its precursor, Constr. Build. Mater. 53 (2014) 66-73. https://doi.org/10.1016/j.conbuildmat.2013.11.062. DOI: https://doi.org/10.1016/j.conbuildmat.2013.11.062

Jalal M., Mansouri E., Sharifipour M., Pouladkhan A. R. - Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles, Mater. Des. 34 (2012) 389-400. https://doi.org/10.1016/j.matdes.2011.08.037. DOI: https://doi.org/10.1016/j.matdes.2011.08.037

Ji T. - Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cem. Concr. Res. 35 (2005) 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004. DOI: https://doi.org/10.1016/j.cemconres.2005.07.004

Land G., Stephan D. - The influence of nano-silica on the hydration of ordinary Portland cement, J. Mater. Sci. 47 (2012) 1011-1017. https://doi.org/10.1007/s10853-011-5881-1. DOI: https://doi.org/10.1007/s10853-011-5881-1

Gu S., Shi Y., Wang L., Liu W., Song Z. J. C., Science P. - Study on the stability of modified colloidal silica with polymer in aqueous environment, Colloid Polym. Sci. 292 (2014) 267-273. https://doi.org/10.1007/s00396-013-3109-4. DOI: https://doi.org/10.1007/s00396-013-3109-4

Chung I., Kim T., Kang J., Tan M. M., Dung N. T. K., Huynh M. D., Dai Lam T., Chinh N. T., Giang B. L., Hoang T. J. C., Physicochemical S. A., Aspects E. - Preparation, stabilization and characterization of 3-(methacryloyloxy) propyl trimethoxy silane modified colloidal nanosilica particles, Colloids Surf., A 585 (2020) 124066. https://doi.org/10.1016/j.colsurfa.2019.124066. DOI: https://doi.org/10.1016/j.colsurfa.2019.124066

Kloprogge J.- Application of vibrational spectroscopy in clay minerals synthesis, Dev. Clay. Sci. 8 (2017) 222-287. https://doi.org/10.1016/B978-0-08-100355-8.00008-4. DOI: https://doi.org/10.1016/B978-0-08-100355-8.00008-4

Dorosz D., Zmojda J., Kochanowicz M. - Investigation on broadband near-infrared emission in Yb3+/Ho3+ co-doped antimony–silicate glass and optical fiber, Opt. Mater. 35 (2013) 2577-2580. https://doi.org/10.1016/j.optmat.2013.07.022. DOI: https://doi.org/10.1016/j.optmat.2013.07.022

Ivanov V. G., Reyes B. A., Fritsch E., Faulques E. - Vibrational states in opals revisited, J. Phys. Chem. C 115 (2011) 11968-11975. https://doi.org/10.1021/jp2027115. DOI: https://doi.org/10.1021/jp2027115

Khan R., Khare P., Baruah B. P., Hazarika A. K., Dey N. C. - Spectroscopic, kinetic studies of polyaniline-flyash composite, Adv. Chem. Engineer. Sci. 1 (2011) 37-44. https://doi:10.4236/aces.2011.12007. DOI: https://doi.org/10.4236/aces.2011.12007

Zeng N., Zhao H., Liu Y., Wang C., Luo C., Wang W., Ma T. - Optimizing of the colloidal dispersity of silica nanoparticle slurries for chemical mechanical polishing, Silicon 14 (2022) 7473–7481. https://doi.org/10.1007/s12633-021-01448-y. DOI: https://doi.org/10.1007/s12633-021-01448-y

Becit B., Duchstein P., Zahn D. - Molecular mechanisms of mesoporous silica formation from colloid solution: Ripening-reactions arrest hollow network structures, PLoS ONE 14 (3) e0212731. https://doi.org/10.1371/journal.pone.0212731. DOI: https://doi.org/10.1371/journal.pone.0212731

Hendrix D., McKeon J., Wille K. - Behavior of colloidal nanosilica in an ultrahigh performance concrete environment using dynamic light scattering, Materials 12 (2019) 1976. https://doi.org/10.3390/ma12121976 DOI: https://doi.org/10.3390/ma12121976

da Cruz Schneid A., Albuquerque L. J. C., Mondo G. B., Ceolin M., Picco A. S., Cardoso M. B. - Colloidal stability and degradability of silica nanoparticles in biological fluids: A review, J. Sol-Gel Sci. Technol. 102 (2022) 41-62. https://doi.org/10.1007/s10971-021-05695-8. DOI: https://doi.org/10.1007/s10971-021-05695-8

Downloads

Published

24-07-2024

How to Cite

[1]
H. T. K. Nguyen, N. T. H. Nguyen, N. M. Huynh, and K. S. Nguyen, “Preparation and characterization of Lithium-stabilized Colloidal Silica as a silicate densifier for concrete surface treatment”, Vietnam J. Sci. Technol., vol. 61, no. 4, Jul. 2024.

Issue

Section

Materials