Fracture analysis in 2D plane strain problems for composite materials containing hard inclusions and voids using an extended consecutive-interpolation quadrilateral element

Binh Hai Hoang, Vay Siu Lo, Bang Kim Tran, Thien Tich TRUONG
Author affiliations

Authors

  • Binh Hai Hoang Department of Engineering Mechanics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Vay Siu Lo Department of Engineering Mechanics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0003-1740-0257
  • Bang Kim Tran Department of Engineering Mechanics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Thien Tich TRUONG Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-3371-8890

DOI:

https://doi.org/10.15625/2525-2518/18456

Keywords:

fracture, Consecutive-interpolation, CQ4, XCQ4, Void/Inclusion, Hole, Edge Crack

Abstract

This paper investigates fracture mechanics in particle-reinforced composites by using the extended finite element method enhanced by the consecutive-interpolation quadrilateral element. These composite materials have discontinuous boundaries such as cracks, voids, holes, and soft inclusions. And the extended consecutive-interpolation quadrilateral element (XCQ4) is employed to model these boundaries in two-dimensional linear elastic deformation problems. XCQ4 combines the enrichment functions in the traditional extended finite element method with the consecutive interpolation on a 4-node quadrilateral element. This element uses both nodal values and averaged nodal gradients as interpolated conditions. In fracture analysis, the stress intensity factors (SIFs) are important parameters that must be defined.  In this study, the values of SIFs at the crack tips are evaluated with the help of the interaction integrals approach. The obtained numerical results are compared with other reliable results showing high accuracy and convergence rate of the XCQ4 element.

Downloads

Download data is not yet available.

References

Belytschko T. and Black T. - Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999) 601-620. https://doi.org/10.1002/ (SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S DOI: https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

Moës N., Dolbow J. and Belytschko T. - A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131-150. https://doi.org/ 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J DOI: https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

Nagashima T., Omoto Y., Tani S. - Stress intensity factor analysis of interface cracks using X-FEM, Int. J. Numer. Mech. Eng. 28 (2003) 1151-1173. https://doi.org/ 10.1002/nme.604 DOI: https://doi.org/10.1002/nme.604

Sukumar N., Huang Z. Y., Prévost J. –H., Suo Z. - Partition of unity enrichment for bimaterial interface cracks, Int. J. Numer. Mech. Eng. 59 (2004) 1075-1102. https://doi.org/10.1002/nme.902 DOI: https://doi.org/10.1002/nme.902

Wang Y., Waisman H. - Material-dependent crack-tip enrichment functions in XFEM for modeling interfacial cracks in bimaterials, Int. J. Numer. Mech. Eng. 112 (2017) 1495-1518. https://doi.org/10.1002/nme.5566 DOI: https://doi.org/10.1002/nme.5566

Bui T. Q., Vo D. Q., Zhang C., Nguyen D. D. - A consecutive-interpolation quadrilateral element (CQ4): Formulation and applications, Finite Elem. Anal. Des. 84 (2014) 14-31. https://doi.org/10.1016/j.finel.2014.02.004 DOI: https://doi.org/10.1016/j.finel.2014.02.004

Zheng C., Wu S. C., Tang X. H., Zhang J. H. - A novel twice-interpolation finite element method for solid mechanics problems, Acta Mech. Sin. 26 (2010) 265-278. https://doi.org/10.1007/s10409-009-0265-3 DOI: https://doi.org/10.1007/s10409-009-0265-3

Wu S. C., Zhang W. H., Peng X., Miao B. R. - A twice-interpolation finite element method (TFEM) for crack propagation problems, Int. J. Comput. Methods 9 (2012) https://doi.org/10.1142/S0219876212500557 DOI: https://doi.org/10.1142/S0219876212500557

Nguyen N. H., Nguyen K. C., Nguyen D. K., Nguyen X. H., Abdel‐Wahab M. - A consecutive‐interpolation polyhedral finite element method for solid structures, Int. J. Numer. Methods Eng. 122 (2021) 5692-5717. https://doi.org/10.1002/nme.6769 DOI: https://doi.org/10.1002/nme.6769

Nguyen N. H., Nguyen X. H., Abdel-Wahab M. - Dynamic Analysis of 3D Solid Structure Using a Consecutive-Interpolation Over Polyhedral Element Mesh, Proceedings of the 4th International Conference on Numerical Modelling in Engineering (2022) 1-8. https://doi.org/10.1007/978-981-16-8806-5_1 DOI: https://doi.org/10.1007/978-981-16-8806-5_1

Nguyen N. H., Le C. T., Nguyen D. K., Nguyen X. H., Abdel-Wahab M. - Three-dimensional polyhedral finite element method for the analysis of multi-directional functionally graded solid shells, Compos. Struct. 305 (2023) 116538. https://doi.org/10.1016/j.compstruct.2022.116538 DOI: https://doi.org/10.1016/j.compstruct.2022.116538

Kang Z., Bui T. Q., Nguyen D. D., Saitoh T., Hirose S. - An extended consecutive-interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics, Acta Mech. 226 (2015) 3991-4015. https://doi.org/10.1007/s00707-015-1451-y DOI: https://doi.org/10.1007/s00707-015-1451-y

Kang Z., Bui T. Q., Saitoh T., Hirose S. - Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments, Theor. Appl. Fract. Mech. 87 (2017) 61-77. https://doi.org/10.1016/j.tafmec.2016.10.006 DOI: https://doi.org/10.1016/j.tafmec.2016.10.006

Truong T. T., Tran B. K., Lo V. S., Nguyen N. T., Nguyen M. N. - Bimaterial interface crack analysis using an extended consecutive-interpolation quadrilateral element, Vietnam J. Sci. Technol. 60 (2022) 869-881. https://doi.org/10.15625/2525-2518/16172 DOI: https://doi.org/10.15625/2525-2518/16172

Mohammadi S. - XFEM Fracture Analysis of Composites, XFEM Fracture Analysis of Composites (2012)https://doi.org/10.1002/9781118443378 DOI: https://doi.org/10.1002/9781118443378

An X., Ma G., Cai Y., Zhu H. - A new way to treat material discontinuities in the numerical manifold method, Comput. Methods Appl. Mech. Eng. 200 (2011) 3296-3308. https://doi.org/10.1016/J.CMA.2011.08.004 DOI: https://doi.org/10.1016/j.cma.2011.08.004

Nguyen H. D., Huang S-C. - Use of XTFEM based on the consecutive interpolation procedure of quadrilateral element to calculate J-integral and SIFs of an FGM plate, Theor. Appl. Fract. Mech. 127 (2023) 103985. https://doi.org/10.1016/ j.tafmec.2023.103985 DOI: https://doi.org/10.1016/j.tafmec.2023.103985

Lal A., Vaghela B. M., Mishra K. - Numerical Analysis of an Edge Crack Isotropic Plate with Void/Inclusions under Different Loading by Implementing XFEM, J. Appl. Comput. Mech. 7 (2021) 1362-1382. https://doi.org/10.22055/jacm.2019.31268.1848

Moës N., Cloirec M., Cartraud P., Remacle J.-F. - A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Eng. 192 (2003) 3163-3177. https://doi.org/10.1016/S0045-7825(03)00346-3 DOI: https://doi.org/10.1016/S0045-7825(03)00346-3

Yang Y., Xu D., Sun G., Zheng H. - Modeling complex crack problems using the three-node triangular element fitted to numerical manifold method with continuous nodal stress, Sci. China Technol. Sci. 60 (2017) 1537-1547. https://doi.org/10.1007/s11431-016-0733-4 DOI: https://doi.org/10.1007/s11431-016-0733-4

Nguyen M. N., Bui T. Q., Truong T. T., Tanaka S., Hirose S. - Numerical analysis of 3-D solids and composite structures by an enhanced 8-node hexahedral element, Finite Elem. Anal. Des. 131 (2017) 1-16. https://doi.org/10.1016/j.finel.2017.04.002 DOI: https://doi.org/10.1016/j.finel.2017.04.002

Nguyen T. N. , Bui Q. T., Nguyen N. M., Truong T. T. - Meshfree thermomechanical crack growth simulations with new numerical integration scheme. Eng. Fract. Mech. 235 (2020) 107121. https://doi.org/10.1016/j.engfracmech.2020.107121 DOI: https://doi.org/10.1016/j.engfracmech.2020.107121

Ventura G., Budyn E., Belytschko T. - Vector level sets for description of propagating cracks in finite elements. Int. J. Numer. Methods Eng. 58 (2003) 1571-1592. https://doi.org/10.1002/nme.829 DOI: https://doi.org/10.1002/nme.829

Limtrakarn W., Dechaumphai P. - Adaptive finite element method to determine KI and KII of crack plate with different Einclusion/Eplate ratio, Trans. Can. Soc. Mech. Eng. 35 (2011) 355-368. https://doi.org/10.1139/tcsme-2011-0020 DOI: https://doi.org/10.1139/tcsme-2011-0020

Ewalds H. and Wanhill R. - Fracture Mechanics, Edward Arnold, New York, 1989.

Downloads

Published

20-10-2023

How to Cite

[1]
B. H. Hoang, V. S. Lo, B. K. Tran, and T. T. TRUONG, “Fracture analysis in 2D plane strain problems for composite materials containing hard inclusions and voids using an extended consecutive-interpolation quadrilateral element”, Vietnam J. Sci. Technol., vol. 61, no. 5, pp. 897–914, Oct. 2023.

Issue

Section

Mechanical Engineering - Mechatronics