Fracture analysis in 2D plane strain problems for composite materials containing hard inclusions and voids using an extended consecutive-interpolation quadrilateral element
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18456Keywords:
fracture, Consecutive-interpolation, CQ4, XCQ4, Void/Inclusion, Hole, Edge CrackAbstract
This paper investigates fracture mechanics in particle-reinforced composites by using the extended finite element method enhanced by the consecutive-interpolation quadrilateral element. These composite materials have discontinuous boundaries such as cracks, voids, holes, and soft inclusions. And the extended consecutive-interpolation quadrilateral element (XCQ4) is employed to model these boundaries in two-dimensional linear elastic deformation problems. XCQ4 combines the enrichment functions in the traditional extended finite element method with the consecutive interpolation on a 4-node quadrilateral element. This element uses both nodal values and averaged nodal gradients as interpolated conditions. In fracture analysis, the stress intensity factors (SIFs) are important parameters that must be defined. In this study, the values of SIFs at the crack tips are evaluated with the help of the interaction integrals approach. The obtained numerical results are compared with other reliable results showing high accuracy and convergence rate of the XCQ4 element.
Downloads
References
Belytschko T. and Black T. - Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999) 601-620. https://doi.org/10.1002/ (SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S DOI: https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
Moës N., Dolbow J. and Belytschko T. - A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131-150. https://doi.org/ 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J DOI: https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Nagashima T., Omoto Y., Tani S. - Stress intensity factor analysis of interface cracks using X-FEM, Int. J. Numer. Mech. Eng. 28 (2003) 1151-1173. https://doi.org/ 10.1002/nme.604 DOI: https://doi.org/10.1002/nme.604
Sukumar N., Huang Z. Y., Prévost J. –H., Suo Z. - Partition of unity enrichment for bimaterial interface cracks, Int. J. Numer. Mech. Eng. 59 (2004) 1075-1102. https://doi.org/10.1002/nme.902 DOI: https://doi.org/10.1002/nme.902
Wang Y., Waisman H. - Material-dependent crack-tip enrichment functions in XFEM for modeling interfacial cracks in bimaterials, Int. J. Numer. Mech. Eng. 112 (2017) 1495-1518. https://doi.org/10.1002/nme.5566 DOI: https://doi.org/10.1002/nme.5566
Bui T. Q., Vo D. Q., Zhang C., Nguyen D. D. - A consecutive-interpolation quadrilateral element (CQ4): Formulation and applications, Finite Elem. Anal. Des. 84 (2014) 14-31. https://doi.org/10.1016/j.finel.2014.02.004 DOI: https://doi.org/10.1016/j.finel.2014.02.004
Zheng C., Wu S. C., Tang X. H., Zhang J. H. - A novel twice-interpolation finite element method for solid mechanics problems, Acta Mech. Sin. 26 (2010) 265-278. https://doi.org/10.1007/s10409-009-0265-3 DOI: https://doi.org/10.1007/s10409-009-0265-3
Wu S. C., Zhang W. H., Peng X., Miao B. R. - A twice-interpolation finite element method (TFEM) for crack propagation problems, Int. J. Comput. Methods 9 (2012) https://doi.org/10.1142/S0219876212500557 DOI: https://doi.org/10.1142/S0219876212500557
Nguyen N. H., Nguyen K. C., Nguyen D. K., Nguyen X. H., Abdel‐Wahab M. - A consecutive‐interpolation polyhedral finite element method for solid structures, Int. J. Numer. Methods Eng. 122 (2021) 5692-5717. https://doi.org/10.1002/nme.6769 DOI: https://doi.org/10.1002/nme.6769
Nguyen N. H., Nguyen X. H., Abdel-Wahab M. - Dynamic Analysis of 3D Solid Structure Using a Consecutive-Interpolation Over Polyhedral Element Mesh, Proceedings of the 4th International Conference on Numerical Modelling in Engineering (2022) 1-8. https://doi.org/10.1007/978-981-16-8806-5_1 DOI: https://doi.org/10.1007/978-981-16-8806-5_1
Nguyen N. H., Le C. T., Nguyen D. K., Nguyen X. H., Abdel-Wahab M. - Three-dimensional polyhedral finite element method for the analysis of multi-directional functionally graded solid shells, Compos. Struct. 305 (2023) 116538. https://doi.org/10.1016/j.compstruct.2022.116538 DOI: https://doi.org/10.1016/j.compstruct.2022.116538
Kang Z., Bui T. Q., Nguyen D. D., Saitoh T., Hirose S. - An extended consecutive-interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics, Acta Mech. 226 (2015) 3991-4015. https://doi.org/10.1007/s00707-015-1451-y DOI: https://doi.org/10.1007/s00707-015-1451-y
Kang Z., Bui T. Q., Saitoh T., Hirose S. - Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments, Theor. Appl. Fract. Mech. 87 (2017) 61-77. https://doi.org/10.1016/j.tafmec.2016.10.006 DOI: https://doi.org/10.1016/j.tafmec.2016.10.006
Truong T. T., Tran B. K., Lo V. S., Nguyen N. T., Nguyen M. N. - Bimaterial interface crack analysis using an extended consecutive-interpolation quadrilateral element, Vietnam J. Sci. Technol. 60 (2022) 869-881. https://doi.org/10.15625/2525-2518/16172 DOI: https://doi.org/10.15625/2525-2518/16172
Mohammadi S. - XFEM Fracture Analysis of Composites, XFEM Fracture Analysis of Composites (2012)https://doi.org/10.1002/9781118443378 DOI: https://doi.org/10.1002/9781118443378
An X., Ma G., Cai Y., Zhu H. - A new way to treat material discontinuities in the numerical manifold method, Comput. Methods Appl. Mech. Eng. 200 (2011) 3296-3308. https://doi.org/10.1016/J.CMA.2011.08.004 DOI: https://doi.org/10.1016/j.cma.2011.08.004
Nguyen H. D., Huang S-C. - Use of XTFEM based on the consecutive interpolation procedure of quadrilateral element to calculate J-integral and SIFs of an FGM plate, Theor. Appl. Fract. Mech. 127 (2023) 103985. https://doi.org/10.1016/ j.tafmec.2023.103985 DOI: https://doi.org/10.1016/j.tafmec.2023.103985
Lal A., Vaghela B. M., Mishra K. - Numerical Analysis of an Edge Crack Isotropic Plate with Void/Inclusions under Different Loading by Implementing XFEM, J. Appl. Comput. Mech. 7 (2021) 1362-1382. https://doi.org/10.22055/jacm.2019.31268.1848
Moës N., Cloirec M., Cartraud P., Remacle J.-F. - A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Eng. 192 (2003) 3163-3177. https://doi.org/10.1016/S0045-7825(03)00346-3 DOI: https://doi.org/10.1016/S0045-7825(03)00346-3
Yang Y., Xu D., Sun G., Zheng H. - Modeling complex crack problems using the three-node triangular element fitted to numerical manifold method with continuous nodal stress, Sci. China Technol. Sci. 60 (2017) 1537-1547. https://doi.org/10.1007/s11431-016-0733-4 DOI: https://doi.org/10.1007/s11431-016-0733-4
Nguyen M. N., Bui T. Q., Truong T. T., Tanaka S., Hirose S. - Numerical analysis of 3-D solids and composite structures by an enhanced 8-node hexahedral element, Finite Elem. Anal. Des. 131 (2017) 1-16. https://doi.org/10.1016/j.finel.2017.04.002 DOI: https://doi.org/10.1016/j.finel.2017.04.002
Nguyen T. N. , Bui Q. T., Nguyen N. M., Truong T. T. - Meshfree thermomechanical crack growth simulations with new numerical integration scheme. Eng. Fract. Mech. 235 (2020) 107121. https://doi.org/10.1016/j.engfracmech.2020.107121 DOI: https://doi.org/10.1016/j.engfracmech.2020.107121
Ventura G., Budyn E., Belytschko T. - Vector level sets for description of propagating cracks in finite elements. Int. J. Numer. Methods Eng. 58 (2003) 1571-1592. https://doi.org/10.1002/nme.829 DOI: https://doi.org/10.1002/nme.829
Limtrakarn W., Dechaumphai P. - Adaptive finite element method to determine KI and KII of crack plate with different Einclusion/Eplate ratio, Trans. Can. Soc. Mech. Eng. 35 (2011) 355-368. https://doi.org/10.1139/tcsme-2011-0020 DOI: https://doi.org/10.1139/tcsme-2011-0020
Ewalds H. and Wanhill R. - Fracture Mechanics, Edward Arnold, New York, 1989.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.