Free vibration analysis of cracked Kirchhoff-Love plate using the extended radial point interpolation method

Vay Siu Lo, Nha Thanh Nguyen, Minh Ngoc Nguyen, Thien Tich Truong
Author affiliations

Authors

  • Vay Siu Lo University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Nha Thanh Nguyen University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Minh Ngoc Nguyen University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Thien Tich Truong University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/59/6/15953

Keywords:

fracture, free vibration, Kirchhoff-Love plate, RPIM, XRPIM

Abstract

The Kirchhoff-Love plate theory is appropriate for analysing thin plate structures. In a simple form, only one degree of freedom (per node) is needed to describe the behaviour of the plate, thus saving the computational cost. Besides, the analysis of cracked structures is important because it is related to the lifetime of the structures. Therefore, this paper uses the extended radial point interpolation method (XRPIM) to investigate the free vibration of the Kirchhoff-Love plate. The XRPIM is based on RPIM so the requirement for calculating the second-order derivative in Kirchhoff-Love theory is easily done. The numerical results from this study are compared with other researchers to verify the accuracy of the method.

Downloads

Download data is not yet available.

References

N. Moes, J. Dolbow, T. Belytschko - A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J DOI: https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

J. Dolbow, N. Moes, T. Belytschko - Modeling fracture in mindlin-Reissner plates with the extended finite element method, Int. J. Solids Struct. 37 (2000) 7161–7183. https://doi.org/10.1016/S0020-7683(00)00194-3 DOI: https://doi.org/10.1016/S0020-7683(00)00194-3

J. Li, Z. S. Khodaei, M. H. Aliabadi - Dynamic dual boundary element analysis for cracked Mindlin plates, Int. J. Solids Struct. 152–153 (2018) 248–260. https://doi.org/10.1016/j.ijsolstr.2018.06.033 DOI: https://doi.org/10.1016/j.ijsolstr.2018.06.033

J. Useche - Fracture dynamic analysis of cracked Reissner plates using the boundary element method, Int. J. Solids Struct. 191–192 (2020) 315–332. https://doi.org/10.1016/j.ijsolstr.2020.01.017 DOI: https://doi.org/10.1016/j.ijsolstr.2020.01.017

J. Lasry, Y. Renard, M. Salaun - Stress intensity factors computation for bending plates with extended finite element method, Int. J. Numer. Methods Eng. 91 (2012) 909–928. https://doi.org/10.1002/nme.4292 DOI: https://doi.org/10.1002/nme.4292

M. Petyt - Introduction to Finite Element Vibration Analysis (2nd Edition), Cambridge, 2010. DOI: https://doi.org/10.1017/CBO9780511761195

Vitor M. A. Leitao - A meshless method for Kirchhoff plate bending problems, Int. J. Numer. Methods Eng. 52 (2001) 1107-1130. https://doi.org/10.1002/nme.244 DOI: https://doi.org/10.1002/nme.244

Y. Liu, Y. C. Hon, K. M. Liew - A meshfree Hermite-type radial point interpolation method for Kirchhoff plate problems, Int. J. Numer. Methods Eng. 66 (2006) 1153–1178. https://doi.org/10.1002/nme.1587 DOI: https://doi.org/10.1002/nme.1587

N. T. Nguyen, T. Q. Bui, C. Zhang, T. T. Truong - Crack growth modeling in elastic solids by the extended meshfree galerkin radial point interpolation method, Eng. Anal. Bound. Elem. 44 (2014) 87–97. https://doi.org/10.1016/j.enganabound.2014.04.021 DOI: https://doi.org/10.1016/j.enganabound.2014.04.021

N. T. Nguyen, T. Q. Bui, T. T. Truong - Transient dynamic fracture analysis by an extended meshfree method with different crack-tip enrichments, Meccanica 52 (2017) 2363–2390. https://doi.org/10.1007/s11012-016-0589-6 DOI: https://doi.org/10.1007/s11012-016-0589-6

N. T. Nguyen, T. Q. Bui, M. N. Nguyen, T. T. Truong - Meshfree thermomechanical crack growth simulations with new numerical integration scheme, Eng. Fract. Mech. 235 (2020) 107–121. https://doi.org/10.1016/j.engfracmech.2020.107121 DOI: https://doi.org/10.1016/j.engfracmech.2020.107121

H. S. Yang, C. Y. Dong - Adaptive extended isogeometric analysis based on PHT-splines for thin cracked plates and shells with Kirchhoff–Love theory, Appl. Math. Model. 76 (2019) 759–799. https://doi.org/10.1016/j.apm.2019.07.002 DOI: https://doi.org/10.1016/j.apm.2019.07.002

G. R. Liu, X. L. Chen - A mesh-free method for static and free vibration analyses of thin plates of complicated shape, J. Sound Vib. 241 (2001) 839–855. https://doi.org/10.1006/jsvi.2000.3330 DOI: https://doi.org/10.1006/jsvi.2000.3330

S. Shojaee, E. Izadpanah, N. Valizadeh, J. Kiendl - Free vibration analysis of thin plates by using a NURBS-based isogeometric approach, Finite Elem. Anal. Des. 61 (2012) 23–34. https://doi.org/10.1016/j.finel.2012.06.005 DOI: https://doi.org/10.1016/j.finel.2012.06.005

T.V. Vu, N.H. Nguyen, A. Khosravifard, M.R. Hematiyan, S. Tanaka, T.Q. Bui - A simple FSDTbased meshfree method for analysis of functionally graded plates, Eng. Anal. Bound. Elem. 79 (2017) 1–12. https://doi.org/10.1016/j.enganabound.2017.03.002 DOI: https://doi.org/10.1016/j.enganabound.2017.03.002

A. J. M. Ferreira, N. Fantuzzi - Kirchhoff Plates. In: MATLAB Codes for Finite Element Analysis. Solid Mechanics and Its Applications, 157 (2020) Springer, Cham. https://doi.org/10.1007/978-3-030-47952-7_12 DOI: https://doi.org/10.1007/978-3-030-47952-7_12

B. Stahl, L.M. Keer - Vibration and stability of cracked rectangular plates, Int. J.

Solids Struct. 8 (1972) 69–91. https://doi.org/10.1016/0020-7683(72)90052-2 DOI: https://doi.org/10.1016/0020-7683(72)90052-2

K. M. Liew, K. C. Hung, M. K. Lim - A solution method for analysis of cracked plates under vibration, Eng. Fract. Mech. 48 (1994) 393–404. https://doi.org/10.1016/0013-7944(94)90130-9 DOI: https://doi.org/10.1016/0013-7944(94)90130-9

M. Bachene, R. Tiberkak, S. Rechak - Vibration analysis of cracked plates using the extended finite element method, Arch. Appl. Mech. 79 (2009) 249—262. https://doi.org/10.1007/s00419-008-0224-7 DOI: https://doi.org/10.1007/s00419-008-0224-7

T. Nguyen-Thoi, T. Rabczuk , T. Lam-Phat , V. Ho-Huu , P. Phung-Van - Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCSDSG3), Theor. Appl. Fract. Mech. 72 (2014) 150–163. https://doi.org/10.1016/j.tafmec.2014.02.004 DOI: https://doi.org/10.1016/j.tafmec.2014.02.004

C.S. Huang, A.W. Leissa - Vibration analysis of rectangular plates with side

cracks via the Ritz method, J. Sound Vib. 323 (2009) 974–988. https://doi.org/10.1016/j.jsv.2009.01.018 DOI: https://doi.org/10.1016/j.jsv.2009.01.018

Downloads

Published

29-12-2021

How to Cite

[1]
V. S. Lo, N. T. Nguyen, M. N. Nguyen, and T. T. Truong, “Free vibration analysis of cracked Kirchhoff-Love plate using the extended radial point interpolation method ”, Vietnam J. Sci. Technol., vol. 59, no. 6, pp. 772–785, Dec. 2021.

Issue

Section

Mechanical Engineering - Mechatronics