Bimaterial interface crack analysis using an extended consecutive-interpolation quadrilateral element
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16172Keywords:
bimaterial interface crack, consecutive-interpolation procedure, extended consecutive-interpolation quadrilateral elementAbstract
A very important problem in the research of layer structures is the modeling of cracks on the material interface. Due to the complex physical and mechanical properties of this structure, the simulation of discontinuities such as cracks and material interface by traditional finite element methods requires a very fine mesh density. Furthermore, mesh smoothing requires a really large amount of computational resources. Therefore, the extended algorithm which does not require the remeshing technique was born to solve the crack problems. In this paper, the extended consecutive-interpolation finite element method (XCFEM) is employed to modeling the mix-mode interface cracks between two dissimilar isotropic materials. The XCFEM using 4-node consecutive-interpolation quadrilateral element (XCQ4) provides continuity of nodal gradient due to the concept of “consecutive-interpolation” so that the stress and strain fields derived from XCQ4 is smoother than that obtained by the classical FEM element. The accuracy and effectiveness of the method are demonstrated via various numerical examples and compared with other researches.
Downloads
References
Williams M. L. - The stress around a fault or crack in dissimilar media, Bulletin of the Seismology Society of America 49 (1959) 199-204.
https://doi.org/10.1785/BSSA0490020199 DOI: https://doi.org/10.1785/BSSA0490020199
Rice J. R. and Sih G. C. - Plane problems of cracks in dissimilar media, J. Appl. Mech. 32 (1965) 418-423. https://doi.org/10.1115/1.3625816 DOI: https://doi.org/10.1115/1.3625816
Rice J. R. - Elastic fracture mechanics concepts for interfacial cracks, J. Appl. Mech. 55 (1988) 98-103. https://doi.org/10.1115/1.3173668 DOI: https://doi.org/10.1115/1.3173668
Nagashima T., Omoto Y., and Tani S. - Stress intensity factor analysis of interface cracks using X-FEM, Int. J. Numer. Mech. Eng. 28 (2003) 1151-1173. https://doi.org/ 10.1002/nme.604 DOI: https://doi.org/10.1002/nme.604
Sukumar N., Huang Z. Y., Prévost J. H., and Suo Z. - Partition of unity enrichment for bimaterial interface cracks, Int. J. Numer. Mech. Eng. 59 (2004) 1075-1102. https://doi.org/10.1002/nme.902 DOI: https://doi.org/10.1002/nme.902
Wang Y. and Waisman H. - Material-dependent crack-tip enrichment functions in XFEM for modeling interfacial cracks in bimaterials, Int. J. Numer. Mech. Eng. 112 (2017) 1495-1518. https://doi.org/10.1002/nme.5566 DOI: https://doi.org/10.1002/nme.5566
Chen L., Liu G. R., Nourbakhsh-Nia N. and Zeng K. - A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks, Comput. Mech. 45 (2010) 109-125. https://doi.org/10.1007/s00466-009-0422-3 DOI: https://doi.org/10.1007/s00466-009-0422-3
An X. M., Zhao Z. Y., Zhang H. H., and He L. - Modeling bimaterial interface cracks using the numerical manifold method, Eng. Anal. Bound. Elem. 37 (2013) 464-474. https://doi.org/10.1016/j.enganabound.2012.11.014 DOI: https://doi.org/10.1016/j.enganabound.2012.11.014
Jiang S., Gu Y., Fan C. M., and Qu W. - Fracture mechanics analysis of bimaterial interface cracks using the generalized finite difference method, Theor. Appl. Fract. Mec. 113 (2021) 102942. https://doi.org/10.1016/j.tafmec.2021.102942 DOI: https://doi.org/10.1016/j.tafmec.2021.102942
Zheng C., Wu S. C., Tang X. H., and Zhang J. H. - A novel twice-interpolation finite element method for solid mechanics problems, Acta Mech. Sin. 26 (2010) 265-278. https://doi.org/10.1007/s10409-009-0265-3 DOI: https://doi.org/10.1007/s10409-009-0265-3
Bui T. Q., Vo D. Q., Zhang C., and Nguyen D. D. - A consecutive-interpolation quadrilateral element (CQ4): Formulation and applications, Finite Elem. Anal. Des. 84 (2014) 14-31. https://doi.org/10.1016/j.finel.2014.02.004 DOI: https://doi.org/10.1016/j.finel.2014.02.004
Kang Z., Bui T. Q., Nguyen D. D., Saitoh T., and Hirose S. - An extended consecutive-interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics, Acta Mech. 226 (2015) 3991-4015. https://doi.org/10.1007/s00707-015-1451-y DOI: https://doi.org/10.1007/s00707-015-1451-y
Mohammadi S. - XFEM fracture analysis of composites, John Wiley & Sons, 2012. https://doi.org/10.1002/9781118443378 DOI: https://doi.org/10.1002/9781118443378
Dundurs J. - Edge-bonded dissimilar orthogonal elastic wedges, J. Appl. Mech. 36 (1969) 650-652. https://doi.org/10.1115/1.3564739 DOI: https://doi.org/10.1115/1.3564739
Bordas S. and Legay A. - X-FEM Mini-Course, EPFL, Lausanne, 2005.
Shih C. F. and Asaro R. J. - Elastic-plastic analysis of cracks on bimaterial interfaces: Part I small scale yielding, J. Appl. Mech. 55 (1988) 299-316. https://doi.org/10.1115/ 1.3173676 DOI: https://doi.org/10.1115/1.3173676
Nahta R. and Moran B. - Domain integrals for axisymmetric interface crack problems, Int. J. Solids Struct. 30 (1993) 2027-2040. https://doi.org/10.1016/0020-7683(93)90049-D DOI: https://doi.org/10.1016/0020-7683(93)90049-D
Yau J. F., Wang S. S., and Corten H. T. - A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity, J. Appl. Mech. 47 (1980) 335-341. https://doi.org/10.1115/1.3153665 DOI: https://doi.org/10.1115/1.3153665
Matos P. P. L., McMeeking R. M., Charalambides P. G., and Drory M. D. - A method for calculating stress intensities in bimaterial fracture, Int. J. Fract. 40 (1989) 235-254. https://doi.org/10.1007/BF00963659 DOI: https://doi.org/10.1007/BF00963659
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.