Bimaterial interface crack analysis using an extended consecutive-interpolation quadrilateral element

Thien Tich Truong, Bang Kim Tran, Vay Siu Lo, Nha Thanh Nguyen, Minh Ngoc Nguyen
Author affiliations

Authors

  • Thien Tich Truong Department of Engineering Mechanics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist.10, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-3371-8890
  • Bang Kim Tran Department of Engineering Mechanics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist.10, Ho Chi Minh City, Viet Nam
  • Vay Siu Lo Department of Engineering Mechanics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist.10, Ho Chi Minh City, Viet Nam
  • Nha Thanh Nguyen Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
  • Minh Ngoc Nguyen Duy Tan Research Institute for Computational Engineering (DTRICE), Duy Tan University, 6 Tran Nhat Duat, District 1, Ho Chi Minh City, VietNam

DOI:

https://doi.org/10.15625/2525-2518/16172

Keywords:

bimaterial interface crack, consecutive-interpolation procedure, extended consecutive-interpolation quadrilateral element

Abstract

A very important problem in the research of layer structures is the modeling of cracks on the material interface. Due to the complex physical and mechanical properties of this structure, the simulation of discontinuities such as cracks and material interface by traditional finite element methods requires a very fine mesh density. Furthermore, mesh smoothing requires a really large amount of computational resources. Therefore, the extended algorithm which does not require the remeshing technique was born to solve the crack problems. In this paper, the extended consecutive-interpolation finite element method (XCFEM) is employed to modeling the mix-mode interface cracks between two dissimilar isotropic materials. The XCFEM using 4-node consecutive-interpolation quadrilateral element (XCQ4) provides continuity of nodal gradient due to the concept of “consecutive-interpolation” so that the stress and strain fields derived from XCQ4 is smoother than that obtained by the classical FEM element. The accuracy and effectiveness of the method are demonstrated via various numerical examples and compared with other researches.

Downloads

Download data is not yet available.

References

Williams M. L. - The stress around a fault or crack in dissimilar media, Bulletin of the Seismology Society of America 49 (1959) 199-204.

https://doi.org/10.1785/BSSA0490020199 DOI: https://doi.org/10.1785/BSSA0490020199

Rice J. R. and Sih G. C. - Plane problems of cracks in dissimilar media, J. Appl. Mech. 32 (1965) 418-423. https://doi.org/10.1115/1.3625816 DOI: https://doi.org/10.1115/1.3625816

Rice J. R. - Elastic fracture mechanics concepts for interfacial cracks, J. Appl. Mech. 55 (1988) 98-103. https://doi.org/10.1115/1.3173668 DOI: https://doi.org/10.1115/1.3173668

Nagashima T., Omoto Y., and Tani S. - Stress intensity factor analysis of interface cracks using X-FEM, Int. J. Numer. Mech. Eng. 28 (2003) 1151-1173. https://doi.org/ 10.1002/nme.604 DOI: https://doi.org/10.1002/nme.604

Sukumar N., Huang Z. Y., Prévost J. H., and Suo Z. - Partition of unity enrichment for bimaterial interface cracks, Int. J. Numer. Mech. Eng. 59 (2004) 1075-1102. https://doi.org/10.1002/nme.902 DOI: https://doi.org/10.1002/nme.902

Wang Y. and Waisman H. - Material-dependent crack-tip enrichment functions in XFEM for modeling interfacial cracks in bimaterials, Int. J. Numer. Mech. Eng. 112 (2017) 1495-1518. https://doi.org/10.1002/nme.5566 DOI: https://doi.org/10.1002/nme.5566

Chen L., Liu G. R., Nourbakhsh-Nia N. and Zeng K. - A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks, Comput. Mech. 45 (2010) 109-125. https://doi.org/10.1007/s00466-009-0422-3 DOI: https://doi.org/10.1007/s00466-009-0422-3

An X. M., Zhao Z. Y., Zhang H. H., and He L. - Modeling bimaterial interface cracks using the numerical manifold method, Eng. Anal. Bound. Elem. 37 (2013) 464-474. https://doi.org/10.1016/j.enganabound.2012.11.014 DOI: https://doi.org/10.1016/j.enganabound.2012.11.014

Jiang S., Gu Y., Fan C. M., and Qu W. - Fracture mechanics analysis of bimaterial interface cracks using the generalized finite difference method, Theor. Appl. Fract. Mec. 113 (2021) 102942. https://doi.org/10.1016/j.tafmec.2021.102942 DOI: https://doi.org/10.1016/j.tafmec.2021.102942

Zheng C., Wu S. C., Tang X. H., and Zhang J. H. - A novel twice-interpolation finite element method for solid mechanics problems, Acta Mech. Sin. 26 (2010) 265-278. https://doi.org/10.1007/s10409-009-0265-3 DOI: https://doi.org/10.1007/s10409-009-0265-3

Bui T. Q., Vo D. Q., Zhang C., and Nguyen D. D. - A consecutive-interpolation quadrilateral element (CQ4): Formulation and applications, Finite Elem. Anal. Des. 84 (2014) 14-31. https://doi.org/10.1016/j.finel.2014.02.004 DOI: https://doi.org/10.1016/j.finel.2014.02.004

Kang Z., Bui T. Q., Nguyen D. D., Saitoh T., and Hirose S. - An extended consecutive-interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics, Acta Mech. 226 (2015) 3991-4015. https://doi.org/10.1007/s00707-015-1451-y DOI: https://doi.org/10.1007/s00707-015-1451-y

Mohammadi S. - XFEM fracture analysis of composites, John Wiley & Sons, 2012. https://doi.org/10.1002/9781118443378 DOI: https://doi.org/10.1002/9781118443378

Dundurs J. - Edge-bonded dissimilar orthogonal elastic wedges, J. Appl. Mech. 36 (1969) 650-652. https://doi.org/10.1115/1.3564739 DOI: https://doi.org/10.1115/1.3564739

Bordas S. and Legay A. - X-FEM Mini-Course, EPFL, Lausanne, 2005.

Shih C. F. and Asaro R. J. - Elastic-plastic analysis of cracks on bimaterial interfaces: Part I small scale yielding, J. Appl. Mech. 55 (1988) 299-316. https://doi.org/10.1115/ 1.3173676 DOI: https://doi.org/10.1115/1.3173676

Nahta R. and Moran B. - Domain integrals for axisymmetric interface crack problems, Int. J. Solids Struct. 30 (1993) 2027-2040. https://doi.org/10.1016/0020-7683(93)90049-D DOI: https://doi.org/10.1016/0020-7683(93)90049-D

Yau J. F., Wang S. S., and Corten H. T. - A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity, J. Appl. Mech. 47 (1980) 335-341. https://doi.org/10.1115/1.3153665 DOI: https://doi.org/10.1115/1.3153665

Matos P. P. L., McMeeking R. M., Charalambides P. G., and Drory M. D. - A method for calculating stress intensities in bimaterial fracture, Int. J. Fract. 40 (1989) 235-254. https://doi.org/10.1007/BF00963659 DOI: https://doi.org/10.1007/BF00963659

Downloads

Published

01-11-2022

How to Cite

[1]
T. T. Truong, B. K. Tran, V. S. Lo, N. T. Nguyen, and M. N. Nguyen, “Bimaterial interface crack analysis using an extended consecutive-interpolation quadrilateral element”, Vietnam J. Sci. Technol., vol. 60, no. 5, pp. 869–881, Nov. 2022.

Issue

Section

Mechanical Engineering - Mechatronics