How to construct the most stable structure of (110) surface from rutile TiO2 bulk?

Tran Thi Thoa, Nguyen Trong Nghia, Hoang Van Hung, Nguyen Thi Minh Hue
Author affiliations

Authors

  • Tran Thi Thoa Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Ha Noi
  • Nguyen Trong Nghia School of Chemical Engineering, Hanoi Univesity of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam
  • Hoang Van Hung Faculty of Chemistry and Center for Computational Science, Hanoi National University of Eduction, 136 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Minh Hue

DOI:

https://doi.org/10.15625/2525-2518/17432

Keywords:

XRD calculation, possible terminated (110) planes, surface energy, DFT+U, DFT

Abstract

XRD pattern of rutile TiO2 bulk and surface energy of possible terminated (110) planes were investigated using the DFT+U method. The (110) surface was demonstrated to be the most popular facet of rutile TiO2, which is in good agreement with data of the JCPDS card No. 21-1276. The difference in surface energy among possible terminated (110) planes is attributed to structure of top and bottom atomic layers. We have found that the P5 plane is the most stable. It represents structure of (110) surface. Rutile TiO2 (110) surface has calculated surface energy of 0.98 J/m2. The value compares well with previous publications. Besides, DFT calculations were also performed. In comparison with DFT+U, surface energy obtained from DFT calculation for (110) surface is very small, about 0.48 J/m2.

Downloads

Download data is not yet available.

References

Chen X. and Mao S. S. - Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications, Chem. Rev. 107 (7) (2007) 2891-2959.

Landmann M., Rauls E., and Schmidt W. G. - The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys.: Condens Matter 24 (2012) 195503.

Li Y., Lee N. H., Lee E. G., Song J. S., Kim S. - The characterization and photocatalytic properties of mesoporous rutile TiO2 powder synthesized through self-assembly of nano crystals, Chem. Phys. Lett. 389 (1-3) (2004) 124-128.

Sakurai K. and Mizusawa M. - X-ray Diffraction imaging of Anatase and Rutile, Anal. Chem. 82 (2010) 3519-3522.

Arami H., Mazloumi M., Khalifehzadeh R., Sadrnezhaad S. K. - Sonochemical preparation of TiO2 nanoparticle, Mater. Lett. 61 (23-24) (2007) 4559-4561.

Anisimov V. I., Poteryaev A. I., Korotin M. A., Anokhin A. O., and Kotliar G. - First-principles calcualtions of the electronic structure and spectra of strongly correlated systems: dynamical mena-field theory, J. Phys. Condens. Matter 9 (1997) 7359-7367.

Thoa T. T., Hung H. V., Hue N. T. M. - Study on structural and electronic properties of rutile TiO2 using DFT+U approach, Vietnam J. Chem. 60 (2) (2022) 183-189.

https://www.vasp.at/

Perdew J. P., Burke K., and Ernzerhof M. - Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.

Perdew J. P., Burke K., and Ernzerhof M. - Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 78 (1997) 1396.

Perdew J. P., Burke K., and Ernzerhof M. - Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 80 (1998) 891.

Blochl P. E. - Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.

Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P. - Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 44 (3) (1991) 943-954.

Pack H. J. M. A. J. D. - Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188.

Barbosaa M. A., Fabrisa G. S. L., Ferrera M. M., Azevedoa D. H. M., Sambrano J. R. - Computational Simulations of Morphological Transformations by Surface Structures: The Case of Rutile TiO2 phase, Materials Research 20 (4) (2017) 920-925

Burdett J. K., Hughbanks T., Miller G. J., Richardson J. W., and Smith J. V. - Structureal-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K, J. Am. Chem. Soc. 109 (1987) 3639-3646.

Pascual J., Camassel J., and Mathieu H. - Fine structure in the intrinsic absorption edge of TiO2, Phys. Rev. B 18 (10) (1978) 5606-5614.

Hameeuw K. J., Cantele G., Ninno D., Trani F., Ladonisi G. - The rutile TiO2 (110) surface: Obtaining converged structural properties from first – principles calculations, J. Chem. Phys. 124 (2006) 024708.

Cui Y., Yang K., Chen L., Liu B., Yang G., Gao Y. - Metal-insulator alternating behavior in VO2/TiO2 supercells, J. Alloys Compd. 870 (2021) 159428.

Wallace S. K., Kenna K. P. M. - Facet Dependent Electron Trapping in TiO2 Nanocrystals, J. Phys. Chem. C 119 (4) (2015) 1913-1920.

Perron H., Domain C., Roques J., Drot R., Simoni E., Catalette H. - Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations, Theor. Chem. Acc. 117 (2007) 565-574.

Deringer V. L., and Csány G. - Many-Body Dispersion correlation effects on bulk and surface properties of rutile and Anatase TiO2, J. Phys. Chem. C 120 (38) (2016) 21552-21560.

Heckel W., Wurger T., Muller S., and Feldbauer G. - Van der Waals Interaction Really Maters: Energetics of Benzoic Acid on TiO2 Rutile Surface,J. Phys. Chem. C 121 (32) (2017) 17207-17214.

Overbury S. H., Bertrand P. A., and Somorjai G. A. - The surface composition of binary systems. Prediction of surface phase diagrams of solid solution, chem. Rev. 75 (5) (1975) 547-560.

Downloads

Published

18-06-2024

How to Cite

[1]
Tran Thi Thoa, Nguyen Trong Nghia, Hoang Van Hung, and N. T. M. Hue, “How to construct the most stable structure of (110) surface from rutile TiO2 bulk?”, Vietnam J. Sci. Technol., vol. 62, no. 3, pp. 446–452, Jun. 2024.

Issue

Section

Materials