Theoretical study on the insertion reaction of CH(X2) into the oh bond in n-C4H9OH

Nguyen Trong Nghia, Duc-Trung Nguyen, Pham Van Tien, Nguyen Thi Minh Hue
Author affiliations


  • Nguyen Trong Nghia School of Chemical Engineering, Hanoi of Science and Technology, 1 Dai Co Viet road, Hai Ba Trung, Ha Noi, Viet Nam
  • Duc-Trung Nguyen School of Chemical Engineering, Hanoi of Science and Technology, 1 Dai Co Viet road, Hai Ba Trung, Ha Noi, Viet Nam
  • Pham Van Tien School of Chemical Engineering, Hanoi of Science and Technology, 1 Dai Co Viet road, Hai Ba Trung, Ha Noi, Viet Nam
  • Nguyen Thi Minh Hue Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay, Ha Noi, Viet Nam



Reaction mechanism, methylidyne radical (CH), n-buthanol (n-C4H9OH), PES


CH radicals play an important role in the combustion of hydrocarbon. The insertion mechanism of a CH radical into the O-H bond of n-C4H9OH is investigated theoretically by a detailed potential energy surface calculation at the BHandHLYP/6-311++G(3df,2p) and CCSD(T)/6-311++G(d,p) (single-point) levels. Our results show that the CH radical attacks into the oxygen atom in n-C4H9OH to form a prereaction complex (COMP) to be followed by an insertion of the CH radical into the O-H bond of the n-C4H9OH molecule to form the low-lying intermediate IS1 (CH2OCH2CH2CH2CH3). This intermediate can isomerize to form IS2 (CH3OCH2CHCH2CH3), IS3 (CH3CH2CH2CH2CH2O), and IS4 (CH3CH2CH2CH2CHOH). These intermediates can decompose to yield 9 products (PR1-PR9) in which major ones are PR1 (CH2CH2CH2CH3 + CH2O), PR2 (CH2CHCH2CH3 + CH3O) and PR3 (CH2CHCH2OCH3 + CH3).


Download data is not yet available.


Walsh K. T., Long M. B., Tanoff M. A., and Smooke M. D. - Experimental and Computational Study Of CH, CH*, And OH* in an Axisymmmetric Laminar Diffusion Flame, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998, pp. 615-623. DOI:

Goulay F., Trevitt A. J., Savee J. D., Bouwman J., Osborn D. L., Taatjes C. A., Wilson K. R., and Leone S. R. - Product Detection of the CH Radical Reaction with Acetaldehyd, J. Phys. Chem. A 116 (2012) 6091-6106. DOI:

Daugey N., Caubet P., Retail B., Costes M., Bergeat A., and Dorthe G. - Kinetic measurements on methylidyne radical reactions with several hydrocarbons at low temperatures, Phys. Chem. Chem. Phys. 7 (2005) 2921-2927. DOI:

Goulay F., Trevitt A. J., Meloni G., Selby T. M., Osborn D. L., Taatjes C. A., Vereecken L., and Leone S. R. - Cyclic Versus Linear Isomers Produced by Reaction of the Methylidyne Radical (CH) with Small Unsaturated Hydrocarbons, J. Am. Chem. Soc. 131 (2009) 993-1005. DOI:

Hickson K. M., Caubet P., Loison J. C. - Unusual Low-Temperature Reactivity of Water: The CH + H2O Reaction as a Source of Interstellar Formaldehyde, J. Phys. Chem. Lett. 4 (2013) 2843-2846. DOI:

Blitz M. A., Talbi D., Seakins P. W., Smith I. W. M. - Rate Constants and Branching Ratios for the Reaction of CH Radicals with NH3: A Combined Experimental and Theoretical Study, J. Phys. Chem. A 116 (2012) 5877-5885. DOI:

Johnson D. G., Blitz M. A. and Seakins P. W. - The reaction of methylidene (CH) with methanol isotopomers, Phys. Chem. Chem. Phys. 2 (2000) 2549-2553. DOI:

Zhang X. B., Liu J. J., Li Z. S., Liu J. Y., and Sun C. C. - Theoretical Study on the Mechanism of the CH + CH3OH, J. Phys. Chem. A 106 (2002), 3814-3818. DOI:

Marshall E. - Gasoline: the unclean fuel, Science 246 (1989) 199-201. DOI:

Katsikadakos D., Zhou C. W., Simmie J. M., Curran H. J., Hunt P. A., Hardalupas Y., Taylor A. M. K. P. - Rate constants of hydrogen abstraction by methyl radical from n-butanol and a comparison of CanTherm, MultiWell and Variflex, Proc. Combust. Inst. 34 (2013) 483-491. DOI:

Becke A. D. - Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648. DOI:

Becke A. D. - A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys. 98 (1993) 1372-77. DOI:

Raghavachari K., Binkley J. S., Seeger R., and Pople J. A. - Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions, J. Chem. Phys. 72 (1980) 650-54. DOI:

Purvis III G. D., Bartlett R. J. - A full coupled-cluster singles and doubles model: The inclusion of disconnected triples, J. Chem. Phys. 76 (1982) 1910-1918. DOI:

Frisch M. J., Trucks G. W., Schlegel H. B., et al. - Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

Huber K. P., Herzberg G. - Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979. DOI:

Rosi M., Skouteris D., Balucani N., Nappi C., Lago N. F., Pacifici L., Falcinelli S., and Stranges D. - An Experimental and Theoretical Investigation of 1-Butanol Pyrolysis, Front. Chem. 7 (2019) 32601-32614. DOI:




How to Cite

Nguyen Trong Nghia, D.-T. Nguyen, Pham Van Tien, and Nguyen Thi Minh Hue, “Theoretical study on the insertion reaction of CH(X2) into the oh bond in n-C4H9OH”, Vietnam J. Sci. Technol., vol. 61, no. 6, pp. 1019–1026, Dec. 2023.




Most read articles by the same author(s)