Theoretical study on the insertion reaction of CH(X2) into the oh bond in n-C4H9OH

Nguyen Trong Nghia, Duc-Trung Nguyen, Pham Van Tien, Nguyen Thi Minh Hue
Author affiliations

Authors

  • Nguyen Trong Nghia School of Chemical Engineering, Hanoi of Science and Technology, 1 Dai Co Viet road, Hai Ba Trung, Ha Noi, Viet Nam
  • Duc-Trung Nguyen School of Chemical Engineering, Hanoi of Science and Technology, 1 Dai Co Viet road, Hai Ba Trung, Ha Noi, Viet Nam
  • Pham Van Tien School of Chemical Engineering, Hanoi of Science and Technology, 1 Dai Co Viet road, Hai Ba Trung, Ha Noi, Viet Nam
  • Nguyen Thi Minh Hue Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16725

Keywords:

Reaction mechanism, methylidyne radical (CH), n-buthanol (n-C4H9OH), PES

Abstract

CH radicals play an important role in the combustion of hydrocarbon. The insertion mechanism of a CH radical into the O-H bond of n-C4H9OH is investigated theoretically by a detailed potential energy surface calculation at the BHandHLYP/6-311++G(3df,2p) and CCSD(T)/6-311++G(d,p) (single-point) levels. Our results show that the CH radical attacks into the oxygen atom in n-C4H9OH to form a prereaction complex (COMP) to be followed by an insertion of the CH radical into the O-H bond of the n-C4H9OH molecule to form the low-lying intermediate IS1 (CH2OCH2CH2CH2CH3). This intermediate can isomerize to form IS2 (CH3OCH2CHCH2CH3), IS3 (CH3CH2CH2CH2CH2O), and IS4 (CH3CH2CH2CH2CHOH). These intermediates can decompose to yield 9 products (PR1-PR9) in which major ones are PR1 (CH2CH2CH2CH3 + CH2O), PR2 (CH2CHCH2CH3 + CH3O) and PR3 (CH2CHCH2OCH3 + CH3).

Downloads

Download data is not yet available.

References

Walsh K. T., Long M. B., Tanoff M. A., and Smooke M. D. - Experimental and Computational Study Of CH, CH*, And OH* in an Axisymmmetric Laminar Diffusion Flame, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998, pp. 615-623. DOI: https://doi.org/10.1016/S0082-0784(98)80453-0

Goulay F., Trevitt A. J., Savee J. D., Bouwman J., Osborn D. L., Taatjes C. A., Wilson K. R., and Leone S. R. - Product Detection of the CH Radical Reaction with Acetaldehyd, J. Phys. Chem. A 116 (2012) 6091-6106. DOI: https://doi.org/10.1021/jp2113126

Daugey N., Caubet P., Retail B., Costes M., Bergeat A., and Dorthe G. - Kinetic measurements on methylidyne radical reactions with several hydrocarbons at low temperatures, Phys. Chem. Chem. Phys. 7 (2005) 2921-2927. DOI: https://doi.org/10.1039/b506096f

Goulay F., Trevitt A. J., Meloni G., Selby T. M., Osborn D. L., Taatjes C. A., Vereecken L., and Leone S. R. - Cyclic Versus Linear Isomers Produced by Reaction of the Methylidyne Radical (CH) with Small Unsaturated Hydrocarbons, J. Am. Chem. Soc. 131 (2009) 993-1005. DOI: https://doi.org/10.1021/ja804200v

Hickson K. M., Caubet P., Loison J. C. - Unusual Low-Temperature Reactivity of Water: The CH + H2O Reaction as a Source of Interstellar Formaldehyde, J. Phys. Chem. Lett. 4 (2013) 2843-2846. DOI: https://doi.org/10.1021/jz401425f

Blitz M. A., Talbi D., Seakins P. W., Smith I. W. M. - Rate Constants and Branching Ratios for the Reaction of CH Radicals with NH3: A Combined Experimental and Theoretical Study, J. Phys. Chem. A 116 (2012) 5877-5885. DOI: https://doi.org/10.1021/jp209383t

Johnson D. G., Blitz M. A. and Seakins P. W. - The reaction of methylidene (CH) with methanol isotopomers, Phys. Chem. Chem. Phys. 2 (2000) 2549-2553. DOI: https://doi.org/10.1039/b001380n

Zhang X. B., Liu J. J., Li Z. S., Liu J. Y., and Sun C. C. - Theoretical Study on the Mechanism of the CH + CH3OH, J. Phys. Chem. A 106 (2002), 3814-3818. DOI: https://doi.org/10.1021/jp014602w

Marshall E. - Gasoline: the unclean fuel, Science 246 (1989) 199-201. DOI: https://doi.org/10.1126/science.246.4927.199

Katsikadakos D., Zhou C. W., Simmie J. M., Curran H. J., Hunt P. A., Hardalupas Y., Taylor A. M. K. P. - Rate constants of hydrogen abstraction by methyl radical from n-butanol and a comparison of CanTherm, MultiWell and Variflex, Proc. Combust. Inst. 34 (2013) 483-491. DOI: https://doi.org/10.1016/j.proci.2012.06.015

Becke A. D. - Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648. DOI: https://doi.org/10.1063/1.464913

Becke A. D. - A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys. 98 (1993) 1372-77. DOI: https://doi.org/10.1063/1.464304

Raghavachari K., Binkley J. S., Seeger R., and Pople J. A. - Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions, J. Chem. Phys. 72 (1980) 650-54. DOI: https://doi.org/10.1063/1.438955

Purvis III G. D., Bartlett R. J. - A full coupled-cluster singles and doubles model: The inclusion of disconnected triples, J. Chem. Phys. 76 (1982) 1910-1918. DOI: https://doi.org/10.1063/1.443164

Frisch M. J., Trucks G. W., Schlegel H. B., et al. - Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

Huber K. P., Herzberg G. - Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979. DOI: https://doi.org/10.1007/978-1-4757-0961-2

Rosi M., Skouteris D., Balucani N., Nappi C., Lago N. F., Pacifici L., Falcinelli S., and Stranges D. - An Experimental and Theoretical Investigation of 1-Butanol Pyrolysis, Front. Chem. 7 (2019) 32601-32614. DOI: https://doi.org/10.3389/fchem.2019.00326

Downloads

Published

15-12-2023

How to Cite

[1]
Nguyen Trong Nghia, D.-T. Nguyen, Pham Van Tien, and Nguyen Thi Minh Hue, “Theoretical study on the insertion reaction of CH(X2) into the oh bond in n-C4H9OH”, Vietnam J. Sci. Technol., vol. 61, no. 6, pp. 1019–1026, Dec. 2023.

Issue

Section

Environment

Most read articles by the same author(s)