Study of structural and electronic properties of graphene and some graphene derivatives based on orthorhombic unit cell by density functional theory

Tran Thi Thoa, Vu Chi Tuan, Pham Tho Hoan, Hoang Van Hung, Nguyen Thi Minh Hue
Author affiliations

Authors

  • Tran Thi Thoa Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay District, Ha Noi, Viet Nam
  • Vu Chi Tuan Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay District, Ha Noi, Viet Nam
  • Pham Tho Hoan Faculty of Information Technology and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay District, Ha Noi, Viet Nam
  • Hoang Van Hung Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Thi Minh Hue Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay District, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16542

Keywords:

graphene, graphene derivatives, hexagonal unit cell, orthorhombic unit

Abstract

Pristine graphene and graphene derivatives have been investigated with the density functional theory (DFT). The calculations consist of structural optimization, density of states (DOS), projected density of states (PDOS) based on orthorhombic 4-atom unit cell. The obtained results are in good agreement with the experimental data. The highest deviations from the experiment are 0.35 % and 0.28 % for the lattice constant and bond length, respectively. In addition, the results of DOS, and PDOS have shed light on electronic properties of graphene. The functionalization of graphene leads to distortion of graphene sheet. New states around the Fermi level of graphene derivatives are mainly composed of 2p orbitals of carbon and oxygen atoms. Besides, structural and electronic properties of graphene and derivatives obtained from the 4-atom orthorhombic unit cell are in line with those from the traditional hexagonal 2-atom unit cell in the previous works. This result proved the reliability of the constructed orthorhombic 4-atom unit cell of graphene.

Downloads

Download data is not yet available.

References

Alexander A. Balandin - Thermal properties of graphene and nanostructured carbon materials, Nature Materials 10 (2010) 569-581. DOI: https://doi.org/10.1038/nmat3064

Zhong-Shuai Wu, Wencai Ren, Libo Gao, Jinping Zhao, Zongping Chen, Bilu Liu, Daiming Tang, Bing Yu, Chuanbin Jiang, and Hui-Ming Chen - Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation, ACS Nano 3 (2) (2009) 411-417. DOI: https://doi.org/10.1021/nn900020u

Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M. R., Geim A. K. - Fine structure constant defines visual transparency of graphene, Science 320 (2008) 5881. DOI: https://doi.org/10.1126/science.1156965

Xu Du, Ivan Skachko, Anthony Barker, Eva Y. Andrei – Approaching ballistic transport in suspended graphene, Nature nanotechnology 3 (2008) 491-495. DOI: https://doi.org/10.1038/nnano.2008.199

Novoselov K. S., Jiang Z., Zhang Y., Morozov S. V., Stormer H. L., Zeitler U.,. Maan J. C., Boebinger G. S., Kim P., Geim A. K. - Room-Temperature Quantum Hall Effect in Graphene, Science 315 (5817) (2007) 1379. DOI: https://doi.org/10.1126/science.1137201

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. - Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197-200. DOI: https://doi.org/10.1038/nature04233

Pulickel M. Ajayan and Boris I. Yakobson - Oxygen breaks into carbon world, Nature 441 (2006) 818-819. DOI: https://doi.org/10.1038/441818a

Hannes C. Schniepp, Je-Luen Li, Michael J. McAllister, Hiroaki Sai,Margarita Herrera-Alonso, Douglas H. Adamson, Robert K. Prud’homme, Roberto Car,Dudley A. Saville, and Ilhan A. Aksay - Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem. B 110 (17) (2006) 8535-8539. DOI: https://doi.org/10.1021/jp060936f

Jun Ito, Jun Nakamura, and Akiko Natori - Semiconducting nature of the oxygen-adsorbed graphene sheet, Journal of Applied Physics 103 (11) (2008) 113712-113712-5. DOI: https://doi.org/10.1063/1.2939270

Amirhasan Nourbakhsh, Mirco Cantoro, Tom Vosch,Geoffrey Pourtois, Francesca Clemente,Marleen H van der Veen, Johan Hofkens, Marc M Heyns,Stefan DeGendtand Bert F. Sels - Bandgap opening in oxygenplasma-treated graphene, Nanotechnology 21 (2010)435203. DOI: https://doi.org/10.1088/0957-4484/21/43/435203

Haiming Huang, Zhibing Li, Juncong She, and Weiliang Wang - Oxygen density dependent band gap of reduced graphene oxide, Journal of Applied Physics 111 (2012) 054317. DOI: https://doi.org/10.1063/1.3694665

Xiang H. J., Su-Huai Wei, and Gong X. G. - Structural motifs in oxidized graphene. A genetic algorithm studybased on density functional theory, Physical Review B 82 (2010) 035416. DOI: https://doi.org/10.1103/PhysRevB.82.035416

Boukhvalov D. W. and Katsnelson M. I. - Modeling of Graphite Oxide, J. Am. Chem. Soc. 130 (2008) 10697-10701. DOI: https://doi.org/10.1021/ja8021686

Jia-An Yan and Chou M. Y. - Oxidation functional groups on graphene. Structural and electronic properties, Physical Review B 82 (2010) 125403.

Lahaye R. J. W. E., Jeong H. K., Park C. Y., and Lee Y. H. - Density functional theory study of graphite oxide for different oxidation levels, Physical Review B 79 (2009) 125435.

Shweta D. Dabhia and Prafulla K. Jha - Tuning of Electronic Properties and Dynamical Stability of GrapheneOxide with Different Functional Groups, Physica E: Low-dimensional Systems and Nanostructures 93 (2017) 332-338. DOI: https://doi.org/10.1016/j.physe.2017.07.002

Jia-An Yan, Lede Xian, and Chou M. Y. - Structural and Electronic Properties of Oxidized Graphene, Physical Review Letters 103 (2009) 086802. DOI: https://doi.org/10.1103/PhysRevLett.103.086802

Santhanamoorthi Nachimuthu, Po-Jung Lai, Jyh-Chiang Jiang - Efficient hydrogen storage in boron doped graphene decorated by transition metals, A first principles study, Carbon 73 (2014) 132-140. DOI: https://doi.org/10.1016/j.carbon.2014.02.048

Lin Ju, Ying Dai, Wei Wei, Mengmeng Li, Cui Jin, Baibiao Huang - Theoretical study on the photocatalytic properties of graphene oxide with single Au atom adsorption, Surface Science 669 (2018) 71-78. DOI: https://doi.org/10.1016/j.susc.2017.11.012

Run Long, Niall J. English, and Oleg V. Prezhdo - Photo-induced Charge Separation across the Graphene-TiO2 Interface is faster than Energy losses: A Time-Domain ab Initio Analysis, J. Am. Chem. Soc. 134 (2012) 4238-14248. DOI: https://doi.org/10.1021/ja3063953

Aijun Du, Yun Hau Ng, Nicholas J. Bell, Zhonghua Zhu, Rose Amal, and Sean C. Smith - Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response, J. Phys. Chem. Lett. 2 (2011) 894-899. DOI: https://doi.org/10.1021/jz2002698

Peter N. O. Gillespie and Natalia Martsinovich - Electronic Structure and Charge Transfer in the TiO2 Rutile (110)/Graphene Composite Using Hybrid DFT Calculations, J. Phys. Chem. C 121 (2017) 4158-4171. DOI: https://doi.org/10.1021/acs.jpcc.6b12506

Akira Suzuki, Masashi Tanabe, Shigeji Fujita - Electronic Band Structure of Graphene Based on the Rectangular 4-Atom Unit Cell, Journal of Modern Physics 8 (2017) 607-621. DOI: https://doi.org/10.4236/jmp.2017.84041

Peter Trucano, Ruey Chen - Structure of graphite by neutron diffraction, Nature 258 (1975) 136-137. DOI: https://doi.org/10.1038/258136a0

Kresse G.and Furthmüller J., http://cms.mpi.univie.ac.at/vasp http://cms.mpi.univie.ac.at/vasp">

Kohn W. and Sham L. J. - Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133

Hohenber P. and Kohn W. - Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864. DOI: https://doi.org/10.1103/PhysRev.136.B864

Perdew J. P., Burke K., and Ernzerhof M. - Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Perdew J. P., Burke K., and Ernzerhof M. - Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 78 (1997) 1396. DOI: https://doi.org/10.1103/PhysRevLett.78.1396

Perdew J. P., Burke K., and Ernzerhof M. - Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 80 (1998) 891. DOI: https://doi.org/10.1103/PhysRevLett.80.891

Blöchl P. E. - Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953. DOI: https://doi.org/10.1103/PhysRevB.50.17953

Hendrik J. Monkhorst, and James D. Pack – Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

Klimeš1 J., Bowler D. R., and Michaelides A. - Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter. 22 (2) (2010) 022201. DOI: https://doi.org/10.1088/0953-8984/22/2/022201

Karpan V. M., Giovannetti G., Khomyakov P. A., Talanana M., Starikov A. A., Zwierzycki M., van den Brink J., Brocks G., and Kelly P. J. - Graphite and Graphene as Perfect Spin Filters, Phys. Rev. Lett. 99 (2007) 176602. DOI: https://doi.org/10.1103/PhysRevLett.99.176602

Jia-An Yan and Chou M. Y. - Oxidation functional groups on graphene: Structural and electronic properties, Phys. Rev. B 82 (2010) 125403. DOI: https://doi.org/10.1103/PhysRevB.82.125403

Je-Luen Li, Konstantin N. Kudin, Michael J. McAllister, Robert K. Prud home, Ilhan A. Aksay, and Robert Car - Oxygen-Driven Unzipping of Graphitic Materials, Phys. Rev. Lett. 96 (2006) 176101. DOI: https://doi.org/10.1103/PhysRevLett.96.176101

Lahaye R. J. W. E., Jeong H. K., Park C. Y., and Lee Y. H. - Density functional theory study of graphite oxide for different oxidation levels, Phys. Rev. B 79 (2009) 125435. DOI: https://doi.org/10.1103/PhysRevB.79.125435

Downloads

Published

01-11-2022

How to Cite

[1]
T. Thi Thoa, V. Chi Tuan, P. Tho Hoan, H. Van Hung, and N. T. M. Hue, “Study of structural and electronic properties of graphene and some graphene derivatives based on orthorhombic unit cell by density functional theory”, Vietnam J. Sci. Technol., vol. 60, no. 5, pp. 794–802, Nov. 2022.

Issue

Section

Materials