Optical properties of circular photonic crystal fibers filled with carbon tetrachloride

Hoang Trong Duc, Le Tran Bao Tran, Tran Ngoc Thao, Chu Van Lanh, Nguyen Thi Thuy
Author affiliations


  • Hoang Trong Duc University of Education, Hue University, 34 Le Loi, Hue City, Thua Thien Hue province, Viet Nam
  • Le Tran Bao Tran Department of Physics, Vinh University, 182 Le Duan, Vinh City, Nghe An province, Viet Nam
  • Tran Ngoc Thao Department of Physics, Vinh University, 182 Le Duan, Vinh City, Nghe An province, Viet Nam
  • Chu Van Lanh Department of Physics, Vinh University, 182 Le Duan, Vinh City, Nghe An province, Viet Nam
  • Nguyen Thi Thuy University of Education, Hue University, 34 Le Loi, Hue City, Thua Thien Hue province, Viet Nam




photonic crystal fiber, circular lattice, nonlinearity coefficient, effective mode area, confinement loss, supercontinuum generation


In this work, the dispersion properties and nonlinear properties of circular photonic crystal fibers were improved by a combination of carbon tetrachloride infiltration into the core and modification of the air hole diameters d1 and d2 of rings in the cladding. The quantities such as dispersion, effective mode area, nonlinear coefficient, and low confinement are analyzed in detail. Based on the survey results, two photonic crystal fibers with optimal optical properties were proposed which are beneficial for supercontinuum generation. The first fiber with Ʌ = 1.0 µm, d1/Ʌ = 0.6, has an all-normal dispersion of 10.785 ps/nm.km at a pump wavelength of 0.985 µm. The high nonlinear coefficient of 581.795 W–1.km–1 and the low confinement loss of 3.904 dB/m are also achieved with this fiber. SC broadband under the influence of soliton is expected to be generated when using the second fiber (Ʌ = 2.0 µm, d1/Ʌ = 0.3) with flat and low anomalous dispersion at the pump wavelength of 1.3 µm.


Download data is not yet available.


Dudley J. M., Genty G., and Coen S. - Supercontinuum generation in photonic crystal fiber, Review of Modern Physics 78 (4) (2006) 1135-1184. https://doi.org/10.1103/ RevModPhys.78.1135. DOI: https://doi.org/10.1103/RevModPhys.78.1135 https://doi.org/10.1103/ RevModPhys.78.1135.">

Nair A. A., Amiri I.S., Boopathi C. S., Karthikumar S., Jayaraju M., and Yupapin P. - Numerical investigation of co-doped microstructured fiber with two zero dispersion wavelengths, Results in Physics 10 (2018) 766-771. ,https://doi.org/10.1016/ j.rinp.2018.07.032. DOI: https://doi.org/10.1016/j.rinp.2018.07.032 https://doi.org/10.1016/ j.rinp.2018.07.032.">

Hou J., Zhao J., Yang C., Zhong Z., Gao Y., and Chen S. - Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings, Photonics Research 2 (2) (2014) 59-63. https://doi.org/10.1364/PRJ.2.000059. DOI: https://doi.org/10.1364/PRJ.2.000059 https://doi.org/10.1364/PRJ.2.000059.">

Borgohain N., Sharma M., and Konar S. - Broadband supercontinuum generation in photonic crystal fibers using cosh-Gaussian pulses at 835 nm wavelength, Optik 127 (4) (2016) 1630-1634. http://dx.doi.org/10.1016/j.ijleo.2015.11.063. DOI: https://doi.org/10.1016/j.ijleo.2015.11.063 http://dx.doi.org/10.1016/j.ijleo.2015.11.063.">

Lanh C. V., Thuy N. T., Bao Tran L. T., Duc H. T., Ngoc V. T. M., Hieu V. L., and Van T. H. - Multi-octave supercontinuum generation in As2Se3 chalcogenide photonic crystal fiber, Photonics and Nanostructures - Fundamentals and Applications 48 (2022) 100986. https://doi.org/10.1016/j.photonics.2021.100986. DOI: https://doi.org/10.1016/j.photonics.2021.100986 https://doi.org/10.1016/j.photonics.2021.100986.">

Thuy N. T., Duc H. T., Bao Tran L. T., Trong D. V., and Lanh C. V. - Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation, Journal of Optics (2022). https://doi.org/10.1007/s12596-021-00802-y. DOI: https://doi.org/10.1007/s12596-021-00802-y https://doi.org/10.1007/s12596-021-00802-y.">

Liao J., Wang Z., Huang T., Wei Q., and Li D. - Design of step-index-microstructured hybrid fiber for coherent supercontinuum generation, Optik 243 (2021) 167393. https://doi.org/10.1016/j.ijleo.2021.167393. DOI: https://doi.org/10.1016/j.ijleo.2021.167393 https://doi.org/10.1016/j.ijleo.2021.167393.">

Alam M. Z., Tahmid M. I., Mouna S. T., Islam M. A., and Alam M. S. - Design of a novel star type photonic crystal fiber for mid-infrared supercontinuum generation, Optics Communications 500 (2021) 127322. https://doi.org/10.1016/j.optcom.2021.127322. DOI: https://doi.org/10.1016/j.optcom.2021.127322 https://doi.org/10.1016/j.optcom.2021.127322.">

Petersen C. R., Prtljaga N., Farries M., Ward J., Napier B., Lloyd G. R., Nallala J., Stone N., and Bang O. - Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Optics Letters 43 (5) (2018) 999-1002. https://doi.org/ 10.1364/OL.43.000999. DOI: https://doi.org/10.1364/OL.43.000999 https://doi.org/ 10.1364/OL.43.000999.">

Abeeluck A. K., and Headley C. - Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation, Optics Letters 30 (1) (2005) 61-63. https://doi.org/10.1364/OL.30.000061. DOI: https://doi.org/10.1364/OL.30.000061 https://doi.org/10.1364/OL.30.000061.">

Dudley J., and Coen S. - Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber, Optics Express 12(11) (2004) 2423-2428. https://doi.org/10.1364/OPEX.12.002423. DOI: https://doi.org/10.1364/OPEX.12.002423 https://doi.org/10.1364/OPEX.12.002423.">

Yi J., Chen S., Shu X., Fawzi A., and Zhang H. - Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy, Biomedical Optics Express 6 (10) (2015) 3701-3713. https://doi.org/10.1364/BOE.6.003701. DOI: https://doi.org/10.1364/BOE.6.003701 https://doi.org/10.1364/BOE.6.003701.">

Heidt A. M., Hartung A., Bosman G. W., Krok P., Rohwer E. G., Schwoerer H., and Bartelt H. - Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers, Optics Express 19 (4) (2011) 3775-3787. https://doi.org/10.1364/OE.19.003775. DOI: https://doi.org/10.1364/OE.19.003775 https://doi.org/10.1364/OE.19.003775.">

Kedenburg S., Strutynski C., Kibler B., Froidevaux P., Desevedavy F., Gadret G., Jules J. C., Steinle T., Morz F., Steinmann A., Giessen H., and Smektala F. - High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers, Journal of the Optical Society of America B 34 (3) (2017) 601-607. https://doi.org/10.1364/JOSAB.34.000601. DOI: https://doi.org/10.1364/JOSAB.34.000601 https://doi.org/10.1364/JOSAB.34.000601.">

Sinobad M., Torre A. D., Armand R., Davies B. L., Ma P., Madden S., Mitchell A., Moss D. J., Hartmann J. M., Fedeli J. M., Monat C., and Grillet C. - Mid-infrared supercontinuum generation in silicon-germanium all-normal dispersion waveguides, Optics Letters 45 (18) (2020) 5008-5011. https://doi.org/10.1364/OL.402159. DOI: https://doi.org/10.1364/OL.402159 https://doi.org/10.1364/OL.402159.">

Bao Tran L. T., Thuy N. T., Ngoc V. T. M., Trung L. C., Minh L. V., Van C. L., Khoa D. X., and Lanh C. V. - Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol, Photonics Letters of Poland 12 (4) (2020) 106-108. https://doi.org/10.4302/plp.v12i4.1054. DOI: https://doi.org/10.4302/plp.v12i4.1054 https://doi.org/10.4302/plp.v12i4.1054.">

Chauhan P., Kumar A., and Kalra Y. - Supercontinuum generation in a hollow-core methanol-silica based photonic crystal fiber: computational model and analysis, Proc. SPIE 11498, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XIV, (2020) 114980T. https://doi.org/10.1117/12.2568970. DOI: https://doi.org/10.1117/12.2568970 https://doi.org/10.1117/12.2568970.">

Sharafali A., Ali A. K. S., and Lakshmanan M. - Modulation instability induced supercontinuum generation in liquid core suspended photonic crystal fiber with cubic-quintic nonlinearities, Physics Letters A 399 (2022) 127290. ,https://doi.org/10.1016/ j.physleta.2021.127290. DOI: https://doi.org/10.1016/j.physleta.2021.127290 https://doi.org/10.1016/ j.physleta.2021.127290.">

Lanh C. V., Van T. H., Van C. L., Borzycki K., Khoa D. X., Vu T. Q., Trippenbach M., Buczyński R., and Pniewski J. - Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation, Laser Physics 29 (7) (2019) 075107. https://doi.org/10.1088/1555-6611/ab2115. DOI: https://doi.org/10.1088/1555-6611/ab2115 https://doi.org/10.1088/1555-6611/ab2115.">

Lanh C. V., Van T. H., Van C. L., K. Borzycki, Khoa D. X., Vu T. Q., M. Trippenbach, R. Buczyński, and J. Pniewski. - Supercontinuum generation in benzene-filled hollow-core fibers, Optical Engineering 60(11) (2021) 116109. http://doi.org/10.1117/ 1.OE.60.11.116109. DOI: https://doi.org/10.1117/1.OE.60.11.116109 http://doi.org/10.1117/ 1.OE.60.11.116109.">

Lanh C. V., Van T. H., Van C. L., Borzycki K., Khoa D. X., Vu T. Q., Trippenbach M., Buczyński R., and Pniewski J. - Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene, Laser Physics 30(3) (2020) 035105. ,https://doi.org/10.1088/ 1555-6611/ab6f09. DOI: https://doi.org/10.1088/1555-6611/ab6f09 https://doi.org/10.1088/ 1555-6611/ab6f09.">

Hieu V. L., Van T. H., Hue T. N., Van C. L., Buczynski R., and Kasztelanic R. - Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene, Optical and Quantum Electronics 53 (2021) 187. https://doi.org/10.1007/s11082-021-02820-3. DOI: https://doi.org/10.1007/s11082-021-02820-3 https://doi.org/10.1007/s11082-021-02820-3.">

Lanh C. V., Anuszkiewicz A., Ramaniuk A., Kasztelanic R., Khoa D. X., Van C. L., Trippenbach M., and Buczyński R. - Supercontinuum generation in photonic crystal fibres with core filled with toluene, Journal of Optics 19 (12) (2017) 125604. https://doi.org/ 10.1088/2040-8986/aa96bc. DOI: https://doi.org/10.1088/2040-8986/aa96bc https://doi.org/ 10.1088/2040-8986/aa96bc.">

Challenor J. - Toxicology of Solvents, Rapra Technology Ltd (2002). ISBN: 1-85957-296-0. https://doi/10.1093/occmed/52.6.363-a.

Challenor J. - Toxicology of Solvents, Rapra Technology Ltd (2002). ISBN: 1-85957-296-0. https://doi/10.1093/occmed/52.6.363-a.

Saitoh K., Florous N. J., and Koshiba M. - Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach, Optics Letters 31(1) (2006) 26-28. https://doi.org/10.1364/OL.31.000026. DOI: https://doi.org/10.1364/OL.31.000026 https://doi.org/10.1364/OL.31.000026.">

Medjouri A., Simohamed L. M., Ziane O., Boudrioua A., and Becer Z. - Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: Application to supercontinuum generation at 1.55 μm. Photonics and Nanostructures - Fundamentals and Applications 16 (2015) 43-50. https://doi.org/10.1016/j.photonics.2015.08.004. DOI: https://doi.org/10.1016/j.photonics.2015.08.004 https://doi.org/10.1016/j.photonics.2015.08.004.">

Moutzouris K., Papamichael M., Betsis S. C., Stavrakas I., Hloupis G., and D. Triantis. - Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared, Applied Physics B 116 (3) (2013) 617-622. https://doi.org/10.1007/ s00340-013-5744-3. DOI: https://doi.org/10.1007/s00340-013-5744-3 https://doi.org/10.1007/ s00340-013-5744-3.">

Kedenburg S., Vieweg M., Gissib T., and Giessen H. - Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region, Optical Materials Express 2 (2012) 1588-611. https://doi.org/10.1364/ OME.2.001588. DOI: https://doi.org/10.1364/OME.2.001588 https://doi.org/10.1364/ OME.2.001588.">

Tan C. Z. - Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, Journal of Non-Crystalline Solids 223 (1-2) (1998) 158-163. ,https://doi.org/ 10.1016/s0022-3093(97)00438-9. DOI: https://doi.org/10.1016/S0022-3093(97)00438-9 https://doi.org/ 10.1016/s0022-3093(97)00438-9.">

Dhara P., and Singh V. K. - Investigation of rectangular solid-core photonic crystal fiber as temperature sensor, Microsystem Technologies 27 (2021) 127-132. https://doi.org/ 10.1007/s00542-020-04927-1. DOI: https://doi.org/10.1007/s00542-020-04927-1 https://doi.org/ 10.1007/s00542-020-04927-1.">

Agrawal G. P. - Nonlinear Fiber Optics (5th edition), Elsevier Academic Press (2013), ISBN: 9780123973078. DOI: https://doi.org/10.1016/B978-0-12-397023-7.00011-5

Saitoh K., Koshiba M., Hasegawa T., and Sasaoka E. - Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Optics Express 11(8) (2003) 843-852. https://doi.org/10.1364/OE.11.000843. DOI: https://doi.org/10.1364/OE.11.000843 https://doi.org/10.1364/OE.11.000843.">

Begum F., Namihira Y., Kinjo T., and Kaijage S. - Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis, Optics Communications 284 (4) (2011) 965-970. https://doi.org/ 10.1016/j.optcom.2010.10.029. DOI: https://doi.org/10.1016/j.optcom.2010.10.029 https://doi.org/ 10.1016/j.optcom.2010.10.029.">

Van T. H., Kasztelanic R., Anuszkiewicz A., Stepniewski G., Filipkowski A., Ertman S., Pysz D., Wolinski T., Khoa D. X., Klimczak M., and Buczynski R. - All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene, Optical Materials Express 8 (11) (2018) 3568-3582. https://doi.org/10.1364/ OME.8.003568. DOI: https://doi.org/10.1364/OME.8.003568 https://doi.org/10.1364/ OME.8.003568.">

Vieweg M., Gissibl T., Pricking S., Kuhlmey B. T., Wu D. C., Eggleton B. J., and Giessen H. - Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers, Optics Express 18(24) (2010) 25232-25240. https://doi.org/10.1364/OE.18.025232. DOI: https://doi.org/10.1364/OE.18.025232 https://doi.org/10.1364/OE.18.025232.">

Van T. H., Kasztelanic R., Filipkowski A., Stępniewski G., Pysz D., Klimczak M., Ertman S., Van C. L., Woliński T. R., Trippenbach M., Khoa D. X., Śmietana M., and Buczyński R. - Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride, Optical Materials Express 9(5) (2019) 2264-2278. https://doi.org/10.1364/OME.9.002264. DOI: https://doi.org/10.1364/OME.9.002264 https://doi.org/10.1364/OME.9.002264.">

Nielsen K., Noordegraaf D., Sørensen T., Bjarklev A., and Hansen T. P. - Selective filling of photonic crystal fibers, Journal of Optics A: Pure and Applied Optics 7 (8) L13–L20 (2005). https://doi.org/10.1088/1464-4258/7/8/L02. DOI: https://doi.org/10.1088/1464-4258/7/8/L02 https://doi.org/10.1088/1464-4258/7/8/L02.">




How to Cite

H. T. Duc, L. T. Bao Tran, T. N. Thao, C. V. Lanh, and N. T. Thuy, “Optical properties of circular photonic crystal fibers filled with carbon tetrachloride ”, Vietnam J. Sci. Technol., vol. 61, no. 6, pp. 984–999, Dec. 2023.




Most read articles by the same author(s)