Effect of zirconia nanoparticles modified by silane coupling agent on some properties of epoxy coating

Authors

  • Phi Hung Dao
  • Thuy Chinh Nguyen
  • Anh Hiep Nguyen
  • Xuan Thai Nguyen
  • Thi Ngoc Lien Ly
  • Thi Huong Giang Hoang
  • Huu Toan Dao
  • Hoang Thai

DOI:

https://doi.org/10.15625/2525-2518/16999

Keywords:

epoxy coating, zirconia nanoparticles, modified nanoparticles, anti-corrosion, silane coupling agent

Abstract

Effect of zirconia nanoparticles (zirconia NPs/ZrO2 NPs) modified by 3 wt.% (glycidyloxypropyl) triethoxysilane – GPTES (m-ZrO2 NPs) on some properties of epoxy coating such as mechanical properties, thermal stability and anti-corrosion performance was investigated. The obtained results indicated that the addition of zirconia nanoparticles to epoxy coating could enhance the properties of this coating. The addition of 2 wt.% of pure ZrO2 NPs (u-ZrO2 NPs) to the epoxy matrix could increase the mechanical properties (hardness and adhesion to the steel substrate) by approximately 10 %, the onset temperature of thermal degradation of the epoxy/u-ZrO2 NPs coating was 4.4 oC higher, and the anti-corrosion performance of epoxy coating was improved in comparison with the neat epoxy coating. Organically modified ZrO2 NPs had higher improvement for epoxy coating’s properties than pure ZrO2 NPs. The epoxy coating filled with m-ZrO2 NPs had 19.7 % higher in relative hardness, 88.73 % more in adhesion to steel substrate, 25.6 oC higher in the onset temperature of thermal degradation, and higher anti-corrosion performance in comparison with the epoxy coating filled with 2 wt.% of pure zirconia nanoparticles. The cross-section FESEM images of the epoxy/m-ZrO2 NPs coating showed that m-ZrO2 NPs could regularly disperse in epoxy polymer matrix while unmodified zirconia nanoparticles (u-ZrO2 NPs) were agglomerated to big cluster in the epoxy coating. This was the reason for the high performance of the epoxy coating filled with zirconia NPs modified by GPTES.

Downloads

Download data is not yet available.

References

Hansson C. M. - The impact of corrosion on society, Metall. Mater. Trans. A 42 A (2011) 2952-2962. DOI: 10.1007/s11661-011-0703-2.

Sørensen P. A., Kiil S., Dam-Johansen K., Weinell C. E. - Anticorrosive coatings: a review, J. Coat. Technol. Res. 6 (2) (2009) 135-176. doi:10.1007/s11998-008-9144-2.

Verma C., Olasunkanmi L. O., Akpan E. D., Quraishi M. A., Dagdag O., Gouri M. E., Sherif E. S. M., Ebenso E. E. - Epoxy resins as anticorrosive polymeric materials: A review, React. Funct. Polym. 156 (2020) 104741. https://doi.org/10.1016/ j.reactfunctpolym.2020.104741.

Jain P., Patidar B., Bhawsar J. - Potential of nanoparticles as a corrosion inhibitor: A Review, J. Bio- Tribo-Corros. 6 (2) (2020). doi:10.1007/s40735-020-00335-0.

Anthony C., Kyle J., Christina M., Anne A. and David W. B. - Review: A Review of metal and metal-oxide nanoparticle coating technologies to inhibit agglomeration and increase bioactivity for agricultural applications, Agronomy 10 (2020) 1018. doi:10.3390/agronomy10071018.

Wahhab A. J., Abdul M. N. A., Kharia S. H. - Wear response of chopped E-glass fiber reinforced epoxy with various volume fractions and concentration of (ZrO2) nanoparticle, Mater. Today: Proc. 61 (3) (2022) 843-851. https://doi.org/10.1016/j.matpr.2021.09.133.

Xiaoqian M., Cong P., Dayu Z., Zhanjun W., Shuaidong L., Jingjing W., Nana S. - Synthesis and mechanical properties of the epoxy resin composites filled with sol−gel derived ZrO2 nanoparticles, J. Solgel Sci. Technol. 88 (2018) 442-453. https://doi.org/ 10.1007/s10971-018-4827-3.

Dorigato A., Pegoretti A., Bondioli F. and Messori M. - Improving epoxy adhesives with zirconia nanoparticles, Compos. Interfaces 17 (2010) 873-892. DOI:10.1163/092764410X 539253.

Haddadi S. A., Mahdavian M., Karimi E. - Evaluation of corrosion protection properties of epoxy coating containing sol-gel surface modified nano-zirconia on mild steel, RSC Adv. 5 (2015) 28769-28777. DOI https://doi.org/10.1039/C5RA02127H.

Wenhua X., Zhenyu W., En-Hou H., Shuai W. and Qian L. - Corrosion performance of nano-ZrO2 modified coatings in hot mixed acid solutions, Materials 11 (2018) 934. doi:10.3390/ma11060934.

Xinding L., Xitao L., Nan L., Hechuang Z., Yan-Zhen Z., Jiaojiao W., Xia T. - ZrO2 nanoparticle encapsulation of graphene microsheets for enhancing anticorrosion performance of epoxy coatings, Surf. Coat. Technol. 358 (2019) 443-451. https://doi.org/10.1016/j.surfcoat.2018.11.045.

Hung D. P., Chinh N. T., Lan P. T., Dung N. T., Hiep N. A., Lan V. T. N., Trung V. Q., Hieu V. D., Ngan T. T. K., and Hoang T. - Assessment of some characteristics and properties of zirconium dioxide nanoparticles modified with 3-(trimethoxysilyl) propyl methacrylate silane coupling agent, J. Chem. 2021 (2021) Article ID 9925355, 10 pages. doi.org/10.1155/2021/9925355.

Chinh N. T., Hung D. P., Trung V. Q., Hiep N. A., Thai N. X., Lien L. T. N., Ngan T. T. K., Hoang T. - Assessment of characteristics and weather stability of acrylic coating containing surface modified zirconia nanoparticles, Prog. Org. Coat. 163 (2022) 106675 https://doi.org/10.1016/j.porgcoat.2021.106675.

Ruchi A., Smita M. and Sanjay K. N. - High performance epoxy nanocomposite adhesive: Effect of nanofillers on adhesive strength, curing and degradation kinetics, Int. J. Adhes. Adhes. 84 (2018) 238-249. https://doi.org/10.1016/j.ijadhadh.2018.03.013.

Anh N. T., Hoa N. T., Hang T. T. X., Duong N. T., Truc T. A. - Influence of hydrotalcite containing corrosion inhibitor modified by silane on corrosion protection performance of epoxy coating, VNU J. Sci.: Natural Sci. Technol 33 (2017) 1-7. https://doi.org/10.25073/ 2588-1140/vnunst.4647.

Anh N. T., Vuong N. T., Hoang T., Xianming S. - Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings, J. Nanosci. Nanotechnol. 16 (2016) 9874-9881. https://doi.org/10.1166/jnn.2016.12162.

Downloads

Published

2022-08-31

How to Cite

[1]
P. H. Dao, “Effect of zirconia nanoparticles modified by silane coupling agent on some properties of epoxy coating”, Vietnam J. Sci. Technol., vol. 60, no. 4, pp. 664–674, Aug. 2022.