Polylactic acid: Characteristics, properties and applications in technique fields and biomedicine
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16721Keywords:
polylactic acid, dielectric properties, degradation, application, biomedicineAbstract
Polylactic acid (PLA) is one of the common aliphatic polyesters synthesized from lactic acid monomer (2-hydroxyl propionic acid) by fermentation or chemical synthesis. Due to its high strength, high modulus, biodegradability, compostability and well-known safety profile, PLA becomes a very useful material for both fundamental researches and practical applications. However, awareness of PLA manufacturing knowledge combined with understanding of its physico-chemical properties is essential for fruitful applications of PLA. This review article presents the synthesis, characteristics, properties and applications in technique and biomedicine fields of PLA. Among them, main synthesis methods of PLA will be mentioned. The physical, mechanical, thermal, gas permeable, electrical, and chemical properties of PLA will be described. The applications of PLA in packaging materials, agriculture, or other technique fields and biomedicine also help readers have a better overview of PLA.
Downloads
References
Hagen R. - PLA (Polylactic acid), in: Wintermantel E. (Eds.), Reference Module in Materials Science and Materials Engineering, Elsevier Inc., Netherlands, 2016, pp. 231-236. DOI: 10.1016/b978-0-12-803581-8.01735-5.
Södergård A., Stolt M. - Industrial production of high molecular weight poly(lactic acid), in: Rafael A., Loong-Tak L., Susan E. M. S., Hideto T. (Eds.), Poly(Lactic acid): Synthesis, Structures, Properties, Processing, and Applications, John Wiley & Sons, UK, 2010, pp. 27-41. https://doi.org/10.1002/9780470649848.ch3.
Goswami P., O'Haire T. - Developments in the use of green (biodegradable), recycled and biopolymer materials in technical nonwovens, in: George K. (Eds.), Advances in Technical Nonwovens, Woodhead Publishing Series in Textiles, Elsevier Inc., Netherlands, 2016, pp. 97-114, Elsevier. https://doi.org/10.1016/B978-0-08-100575-0.00003-6.
Li G., Zhao M., Xu F., Yang B., Li X., Meng X., Teng L, Sun F., Li Y. - Synthesis and biological application of polylactic acid, Molecules 25 (21) (2020) 5023. DOI: 10.3390/molecules25215023.
Lasprilla A. J., Martinez G. A., Lunelli B. H., Jardini A. L., Filho R. M. - Poly-lactic acid synthesis for application in biomedical devices - A review, Biotechnol. Adv. 30 (1) (2012) 321-328. https://doi.org/10.1016/j.biotechadv.2011.06.019.
Ferego G., Cella G. D., Basitoli C. - Effect of molecular weight and crystallinity of poly(lactic acid) mechanical properties, J. Appl. Polym. Sci. 59 (1) (1996) 37-43. https://doi.org/10.1002/(SICI)1097-4628(19960103)59:1%3C37::AID-APP6%3E3.0.CO;2-N.
Gupta A. P., Vimal K. - New emerging trends in synthetic biodegradable polymers – Polylactide: A critique, Eur. Polym. J. 43 (10) (2007) 4053-4074.
https://doi.org/10.1016/j.eurpolymj.2007.06.045.
Schindler A., Harper D. - Polylactide. II., Viscosity-molecular weight relationships and unperturbed chain dimensions, J. Polym. Sci. Polym. Chem. 17 (8) (1979) 2593-2599. https://doi.org/10.1002/pol.1979.170170831.
Sina E. (Eds.) – Handbook of Biopolymers and Biodegradable plastics, A volume in Plastics Design Library, Elsevier Inc., Netherlands, 2013, 462 pp., https://doi.org/10.1016/C2011-0-07342-8.
Henton D. E., Gruder P., Lunt J., Randall J. - Polylactic acid technology, in: Amar K. M., Manjusri M., Laweence T. D. (Eds.), Natural Fibers, Biopolymers and Biocomposites, CRC Press, United States, 2005, pp. 527 – 577. https://doi.org/10.1201/9780203508206.
Zilberman M., Eberhart R. C. - Synthetic biodegradable polymers as medical devices, Annu. Rev. Biomed. Eng. 8 (2006) 153–180.
Garlotta D. - A literature review of poly(lactic acid), J. Polym. Environ. 9 (2) (2001) 63-84. https://doi.org/10.1023/A:1020200822435.
Xiao L., Wang B., Yang G., Gauthier M. - Poly (lactic acid)-based biomaterials: synthesis, modification and applications, in: Ghista D. N. (Eds.), Biomedical Science, Engineering and Technology, IntechOpen Limited, United Kingdom, 2012, pp. 247-282. DOI: 10.5772/23927.
Hartmann M. H. - High molecular weight polylactic acid polymers, in: Kaplan D. L. (Eds.), Biopolymers from Renewable Resources, Macromolecular Systems - Materials Approach, Springer, Berlin, Heidelberg, 1998, 367–411. DOI: 10.1007/978-3-662-03680-8_15.
Baiardo M., Frisoni G., Scandola M., Rimelen M., Lips D., Ruffieux K., Wintermantel E. - Thermal and mechanical properties of plasticized poly(L-lactic acid), J. Appl. Polym. Sci. 90 (7) (2003) 1731–1738. https://doi.org/10.1002/app.12549.
Katsuyoshi S. - Mechanical and electrical properties of polylactic acid with aliphatic - aromatic polyester, J. Eng. 2018 (2018) 6597183, 7 pp.
https://doi.org/10.1155/2018/6597183.
Shady F., Daniel G. A., Robert L. - Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review, Adv. Drug Deliv. Rev. 107 (2016) 367–92. https://doi.org/10.1016/j.addr.2016.06.012.
Carrasco F., Pagès P., Gámez-Pérez J., Santana O. O., Maspoch M. L. - Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties, Polym. Degrad. Stab. 95 (2) (2010) 116-125.
https://doi.org/10.1016/j.polymdegradstab.2009.11.045.
Mohamed S. B., Basim A .J., Abdel H. I. M., Muhammad Z. I. -Thermal insulation and mechanical properties of polylactic acid (PLA) at different processing conditions, Polymers 12 (2020) 2091. https://doi.org/10.3390/polym12092091.
Adrian - Ioan B. -Thermal expansion coefficient determination of polylactic acid using digital image correlation, E3S Web of Conferences, vol. 32, Romania, 2018, 01007, 6 pp.. https://doi.org/10.1051/e3sconf/20183201007.
Painter P. C., Coleman M. M. - Fundamental of Polymer Science, Technomic Publishing Co., Lancaster, PA 1994, 433 pp. https://doi.org/10.1002/actp.1995.010460214
Oliveira N. S., Oliveira J., Gomes T., Ferreira A., Dorgan J., Marrucho I. M. - Gas sorption in poly(lactic acid) and packaging material, Fluid Ph. Equilibria 222-223 (2004) 317-324. https://doi.org/10.1016/j.fluid.2004.06.032.
Jasim A., Sunil K. V. - Polylactides - Chemistry, properties and green packaging technology: a review, Int. J. Food Prop. 14 (1) (2011) 37-58.
https://doi.org/10.1080/10942910903125284.
Toru O., Katsuyoshi S., Shigetaka F. - Electrical properties of heat-treated polylactic acid, Electr. Eng. Jpn. 180 (1) (2012) 1-8. https://doi.org/10.1002/eej.21272.
Veselý P., Horynová E., Tich T., Šefl O. - Study of electrical properties of 3D printed objects, Poster, Prague, 2018.
Joziasse C. A. P., Grijpma D. W., Bergsma J. E., Cordewener F. W., Bos R. R. M., Pennings A. J. - The influence of morphology on the hydrolytic degradation of as-polymerized and hot-drawn poly(L-lactide), Colloid Polym. Sci. 276 (1998) 968-975. https://doi.org/10.1007/s003960050335.
Grizzi I., Garreau H., Li S., Vert M. - Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence, Biomaterials 16 (1995) 305-311.
https://doi.org/10.1016/0142-9612(95)93258-F.
Tsuji H., Nakahara K. - Poly(l-lactide). IX. Hydrolysis in acid media, J. Appl. Polym. Sci. 86 (1) (2002) 186-194. https://doi.org/10.1002/app.10813.
Irvine D. - Biodegradable solid polymeric materials, MIT opencourseware, Massachusetts Institute of Technology, USA, 2006, http://ocw.mit.edu/courses/biological-engineering/20-462j-molecular-principles-of-biomaterials-spring-2006/lecture-notes/lec2_clean.pdf (Lecture 2, Spring 2006) (accessed 14 June 2022).
Yuan X. Y., Mark A. F. T., Yao K. - Comparative observation of accelerated degradation of poly(L- lactic acid) fibers in phosphate buffered saline and a dilute alkaline solution, Polym. Degrad. Stab. 75 (1) (2002) 45-53. https://doi.org/10.1016/S0141-3910(01)00203-8.
Itaavaara M., Karjoma S., Selin J. F. - Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions, Chemosphere 46 (6) (2002) 879-885.
https://doi.org/10.1016/S0045-6535(01)00163-1.
Guidance for industry: Dissolution testing of immediate release solid oral dosage forms, US-FDA, 1997. https://www.fda.gov/media/70936/download (accessed 14 June 2022).
Liu C., Zhang D., Li D., Jiang D., Chen X. - Preparation and characterization of biodegradable polylactide (PLA) microspheres encapsulating ginsenoside Rg3, Chem. Res. Chin. Univ. 24 (5) (2008) 588-591. https://doi.org/10.1016/S1005-9040(08)60124-5.
McNeill I. C., Leiper H. A. - Degradation studies of some polyesters and polycarbonates - 1. Polylactide: General features of the degradation under programmed heating conditions, Polym. Degrad. Stab. 11 (3) (1985) 309-326. https://doi.org/10.1016/0141-3910(85)90050-3.
Majid J., Elmira A. T., Muhammad I., Muriel J., Stephane D. - Poly-lactic acid: production, applications, nanocomposites, and release studies, Compr. Rev. Food Sci. Food Saf. 9 (5) (2010) 552-571. DOI: 10.1111/j.1541-4337.2010.00126.x.
Carsten H. - The market for bio-based packaging: consumers' perceptions and preferences regarding bio-based packaging, in: Sapuan S. M., Ilyas R. A. (Eds.), Bio-based Packaging: Material, Environmental and Economic Aspects, John Wiley & Sons, Inc., UK, 2021, pp. 453-465. https://doi.org/10.1002/9781119381228.ch26.
Haugaard V. K., Weber C. J., Danielsen B., Bertelsen G. - Quality changes in orange juice packaged inmaterials based on polylactate, Eur. Food Res. Technol. 214 (2002) 423–428. https://doi.org/10.1007/s00217-001-0474-x.
Intan S. M. A. T., Marlene J. C., Joseph M., Stephen W. B. - A Review of poly(lactic acid)-based materials for antimicrobial packaging, J. Food Sci. 79(8) (2014) R1477-1490. DOI: 10.1111/1750-3841.12534.
Heat resistant PLA for coffee cups,www.purac.com/bioplastics (accessed 14 June 2022).
Piscopo A., Zappia A., de Bruno A., Pozzo S., Limbo S., Piergiovanni L., Poiana M. - Use of biodegradable materials as alternative packaging of typical Calabrian Provola cheese, Food Packag. Shelf Life 21 (2019) 100351. https://doi.org/10.1016/j.fpsl.2019.100351.
Corina L. R., Elodie B., Maria-Beatrice C., Patrizia C., Andrea L., Ilaria C., Francesca B., Belén M. M., Rafael A., Lodovico A., et al. - Bio-based packaging: materials, modifications, industrial applications and sustainability, Polymers 12 (7) (2020) 1558. https://doi.org/10.3390/polym12071558
Reis M. O., Olivato J. B., Bilck A. P., Zanela J., Grossmann M. V. E., Yamashita F. - Biodegradable trays of thermoplastic starch/poly(lactic acid) coated with beeswax, Ind. Crops Prod. 112 (2018) 481–487. https://doi.org/10.1016/j.indcrop.2017.12.045.
Stevens E. S. - Green plastics. Introduction to the new science of biodegradable plastics, Princeton University Press, New Jersey, 2002, 240 pp.
https://doi.org/10.2307/j.ctv10crf29.
Maria R., Mona E. P., Patrizia C., Andrea L., Rica B., Amalia M., Elena G. - Biodegradable alternative to plastics for agriculture application, Rom. Biotechnol. Lett. 16 (6) Supplement (2011) 59-64.
FKuR Kunststoff Bio-Flex® F 6513 Compostable PLA Blend, http://www.matweb.com/search/datasheettext.aspx?matguid=54c9fc8e55b044e2a58cb875dc7238a4 (accessed 14 June 2022).
Ozan A., Akbar K. - Overview of poly(lactic acid) (PLA) fibre: Part I: Production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibres, Fibre Chem. 41 (2009) 391-401. https://doi.org/10.1007/s10692-010-9213-z.
Karst D., Hain M., Yang Y. - Care of PLA textiles, Res. J. Text. Appar. 13 (4) (2009) 69-74. https://doi.org/10.1108/RJTA-13-04-2009-B008.
Bioplastics to produce fabrics with advanced properties, https://news.bio-based.eu (accessed 14 June 2022).
Nuria L. A. - Bio-based fibers with improved properties for clothing applications, Inter. Fiber J., 2020. https://fiberjournal.com/bio-based-fibers-with-improved-properties-for-clothing-applications/ (accessed 14 June 2022).
Sirada P., Supaphorn T., Jessada W. O., Prayoon S., Chiyaprek A., Tirapong C., Narin K., Narongchai O. C., Natee S. - Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application, Energy Procedia 34 (2013) 534 – 541. https://doi.org/10.1016/j.egypro.2013.06.782
Project, E., 2014. http://evolutionproject.eu (accessed 14 June 2022).
Bioplastics 2014, http://www.speautomotive.com (accessed 14 June 2022).
Amani B. - Elaboration of polylactide-based materials for automotive application: study of structure-process-properties interactions, Mechanics of materials [physics.class-ph], Université de Valenciennes et du Hainaut-Cambresis, Université de Mons, France, 2016.
Gabriel E. M. M., Silvia M. A. C. - Best uses of PLA plastic type and agricultural environmental alternatives, Easy Chair Preprints 2705 (2020). https://easychair.org/publications/preprint/SHxn (accessed 14 June 2022).
Huber T., Müssig J. - Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test, Compos. Interfaces 15 (2-3) (2008) 335–349. https://doi.org/10.1163/156855408783810948.
Antony S., Cherouat A., Montay G. - Fabrication and characterization of hemp fibre based 3D printed honeycomb sandwich structure by FDM process, Appl. Compos. Mater. 27 (2020) 935–953. https://doi.org/10.1007/s10443-020-09837-z.
Guduru K. K., Srinivasu G. - Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing, Mater. Today: Proc. 33 (2020) 5403–5407. https://doi.org/10.1016/j.matpr.2020.03.128.
Auras R., Lim L. T., Selke S. E., Tsuji H. (Eds.) - Poly (lactic acid): Synthesis, structures, properties, processing, and applications, John Wiley & Sons, Inc., UK, 2010, 499 pp. DOI: 10.1002/9780470649848.
Henning C., Schmid A., Hecht S., Harre K., Bauer R. - Applicability of different bio-based polymers for wiring boards, Period. Polytech. Electr. Eng. Comput. Sci. 63 (1) (2019) 1-8. https://doi.org/10.3311/PPee.13431.
http://www.binhthuannhabe.com/home/read/17/250 (accessed 14 June 2022).
Eda H. T.r and Husnu Y. E. - Extrusion-based 3D printing applications of PLA composites: A review, Coatings 11 (4) (2021) 390.
https://doi.org/10.3390/coatings11040390.
Postiglione G., Natale G., Griffini G., Levi M., Turri S. - Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling, Compos. Part A Appl. Sci. Manuf. 76 (2015) 110-114.
ttps://doi.org/10.1016/j.compositesa.2015.05.014.
Jain S. K., Tadesse Y. - Fabrication of polylactide/carbon nanopowder filament using melt extrusion and filament characterization for 3D printing, Int. J. Nanosci. 18 (5) (2019) 1–4. https://doi.org/10.1142/S0219581X18500266.
Andriambeloson J. A., Wiid P. G. - A 3D-printed PLA plastic conical antenna with conductive-paint coating for RFI measurements on MeerKAT site, Proceedings of the 2015, IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Turin, Italy, 2015, pp. 945-948.
DOI: 10.1109/APWC.2015.7300188.
Obuchi S., Ogawa S. - Packaging and other commercial applications, in: Rafael A., Loong – Tak L., Susan E. M. S., Hideto T. (Eds.), Poly (lactic acid): Synthesis, Structures, Properties, Processing, and Applications, John Wiley & Sons Inc., UK, 2010, pp. 457-467. https://doi.org/10.1002/9780470649848.ch28.
Bhagia S., Bornani K., Agrawal R., Satlewal A., Ďurkovič J., Lagaňa R., Bhagia M., Yoo C. G., Zhao X., Kunc V., et al. - Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries, Appl. Mater. Today 24 (2021) 101078. https://doi.org/10.1016/j.apmt.2021.101078.
Ganjyal G. M., Reddy N., Yang Y. Q., Hanna M. A. - Biodegrable packaging foams from starch acetate blended with corn stalk fibers, J. Appl. Polym. Sci. 93 (6) (2004) 2627-2633. https://doi.org/10.1002/app.20843
Yan C., Ma S., Ji Z., Guo Y., Liu Z., Zhang X., Wang X. - 3D printing of an oil/water mixture separator with in situ demulsification and separation, Polymers 11 (2019) 774. DOI: 10.3390/polym11050774.
Zhou G., Wang K.P., Liu H.W., Wang L., Xiao X.F., Dou D.D., Fan Y.B. - Three-dimensional polylactic acid@graphene oxide/chitosan sponge bionic filter: Highly efficient adsorption of crystal violet dye, Int. J. Biol. Macromol. 113 (2018) 792–803. DOI: 10.1016/j.ijbiomac.2018.02.017
Kim K., Retri M. C., Choe G., Nam M., Cho D., Shin K. - Three-dimensional, printed waterfiltration system for economical, on-site arsenic removal, PLoS ONE 15 (2020) e0231475. https://doi.org/10.1371/journal.pone.0231475.
Marconi P. L., Trentini A., Zawoznik M., Nadra C., Mercadé J. M., Novoa J. S. N., Orozco D., Groppa M. D. - Development and testing of a 3D-printable polylactic acid device to optimize a water bioremediation process, AMB Express 10 (2020) 142. https://doi.org/10.1186/s13568-020-01081-9
http://khoacokhi.tlu.edu.vn/sinh-vien/sinh-vien-co-khi-thuy-loi-thiet-ke-che-tao-thanh-cong-may-in 3D (accessed 14 June 2022).
Cuon-soi-nhua-in-3d-pla-ultimaker, https://shop.in3ds.com/88-cuon-soi-nhua-in-3d-pla-ultimaker.html (accessed 14 June 2022).
Czigány T., Kovács J., Tábi T. - Basalt fiber reinforced poly(lactic acid)composites for engineering applications, The 19th International Conference on Composite Materials Proceeding, 2013, pp. 4377-4384.
Choi R. S., Riegler M., Pothoulakis C., Kim B. S., Mooney D., Vacanti M., Vacanti J. P. - Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine, J. Pediatr. Surg 33 (7) (1998) 991–996. https://doi.org/10.1016/S0022-3468(98)90520-6.
Wang Y., Guo G., Chen H., Gao X., Fan R., Zhang D., Zhou L., Xiao L., Zhang X. - Preparation and characterization of polylactide/poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) hybrid fibers for potential application in bone tissue engineering, Int. J. Nanomed. 9 (2014) 1991-2003.
https://doi.org/10.2147/IJN.S55318.
Singhvi M. S., Zinjarde S. S., Gokhale D. V. - Polylactic acid: synthesis and biomedical applications, J. Appl. Microbiol. 127 (2019) 1612-1626.
Ren J. – Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications, Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg, 2010, 302 pp. DOI: 10.1007/978-3-642-17596-1_3.
Li Q., Zhang L., Zhou G., Liu W., Cao Y. - Fabrication of PGA/PLA scaffold with the shape of human nose, in: Andrades J. A. (Eds.), Regenerative Medicine and Tissue Engineering, IntechOpen Limited, United Kingdom, 2013. DOI: 10.5772/55540.
Shim I. K., Jung M. R., Kim K. H., Seol Y. J., Park Y. J., Park W. H., Lee S. J. - Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanicalexpansion: Fabrication and bone regeneration, J. Biomed. Mater. Res. B Appl. Biomater. 95 (1) (2010) 150-160. DOI: 10.1002/jbm.b.31695.
Ge Z., Tian X., Heng B. C., Fan V., Yeo J. F., Cao T. - Histological evaluation ofosteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model, Biomed. Mater. 4 (2) (2009) 021001. DOI: 10.1088/1748-6041/4/2/021001.
Shuqiang L., Juanjuan Y., Huimin L., Kaiwen W., Gaihong W., Bowen W., Mingfang L., Yao Z., Peng W., Jie Z., et al. - Controllable drug release behavior of polylactic acid (PLA) surgical suture coating with ciprofloxacin (CPFX) - polycaprolactone (PCL)/polyglycolide (PGA), Polymers (Basel) 12 (2) (2020) 288. DOI: 10.3390/polym12020288.
Drumright R. E., Gruber P. R. and Henton D. E. - Polylactic acid technology, Advanced Materials 12 (23) (2000) 1841-1846. https://doi.org/10.1002/15214095(200012)-12:23%3C1841::AID-ADMA1841%3E3.0.CO;2-E.
Chinh N. T., Cong D. V., Huynh M. D., Tuan V. M., Trang N. T. T., Mai T. T., Hoang T. -Thermal properties and morphology of poly-lactic acid/chitosan composite loading nifedipine, Vietnam J. Chem. 53 (6) (2015) 706-712. https://doi.org/10.15625/2015-00207 (in Vietnamese).
Chinh N. T., Trang N. T. T., Giang N. V., Thanh D. T. M., Hang T. T. X., Tung N. Q., Truyen C. Q., Quan P. M., Long P. Q., Hoang T. - In vitro nifedipine release from poly(lactic acid)/chitosan nanoparticles loaded with nifedipine, J. Appl. Polym. Sci. 133 (16) (2016) 43330. https://doi.org/10.1002/app.43330.
Trang N. T. T., Chinh N. T., Giang N. V., Thanh D. T. M., Lam T. D., Hoang T. -PLA/CS/Nifedipine nanocomposite films: Properties and the in-vitro release of nifedipine, J. Electron. Mater. 45 (7) (2016) 3581 - 3590. https://doi.org/10.1007/s11664-016-4512-7.
Chinh N. T., Trang N. T. T., Mai T. T., Cong D. V., Huynh M. D., Trung T. H., Thang V. V., Hoang T., Giang N. V. - Influence of polyethylene oxide content on some characteristics of PLA/CS films loading nifedipine, Vietnam J. Sci. Technol. 55 (6) (2017) 716-724. https://doi.org/10.15625/2525-2518/55/6/9617.
Chinh N. T., Trang N. T. T., Mai T. T., Thanh D. T. M., Trung T. H., Trung T. H., Quan L. V., Hoa N. T., Mao C. V., Nghia N. T., et al. - Polylactic acid/chitosan nanoparticles carrying nifedipine: Some physical characteristics and in vivo test results in animal, J. Nanosci. Nanotechnol. 18 (2018) 2294–2303. DOI: 10.1166/jnn.2018.14537.
Chinh N. T., Duc L. N., Trung T. H., Huynh M. D., Giang N. V., Cong D. V., Mai T. T., Lam T. D., and Hoang T. - Synthesis and characterization of core–shell structure PLA/CS/NIF nanoparticles, Int. J. Nanotechnol. 15 (11/12) (2018) 952-967.
Dedukh N. V., Makarov V. B., Pavlov A. D. - Polylactide-based biomaterial and its use as bone implants (analytical literature review), Pain Joints Spine 9 (1) (2019) 28-35. DOI: 10.22141/2224-1507.9.1.2019.163056.
Thom N. T., Hoang T., Mao C. V., Son H. A., Hai N. S., Trang N. T. T., Nam P. T., Phuong N. T., Hien N. T. L., Thanh D. T. M. - In vitro and in vivo tests of PLA/d-HAp nanocomposite, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8 (4) (2017) 045013. https://doi.org/10.1088/2043-6254/aa92b0.
Freire A. R., Rossi A. C., Queiroz T. P., Gulinelli J. L., Souza F. Á., Margonar R., Garcia-Junior I. R., Hochuli-Vieira E., Okamoto R. - Histometric analysis of bone repair in bone-implant interface using a polylactic/polyglycolic acid copolymer associated with implants in rabbit tibia, J. Oral Implantol. 38 (S1) (2012) 449-457. DOI: 10.1563/AAID-JOI-D-10-00102.
Morawska-Chochol A., Jaworska J., Chlopek J., Kasperczyk J., Dobrzyński P., Paluszkiewicz C., Bajor G. - Degradation of poly(lactide-co-glycolide) and its composites with carbon fibres and hydroxyapatite in rabbit femoral bone, Polym. Degrad. Stab. 96 (4) (2011) 719-726. DOI: 10.1016/s1010-5182(98)80045-0.
Haers P. E., Suuronen R., Lindqvist C., Sailer H. - Biodegradable polylactide plates and screws in orthognathic surgery: Technical note, J. Craniomaxillofac Surg. 26 (2) (1998) 87–91. DOI: 10.1016/s1010-5182(98)80045-0.
Joukainen A., Pihlajamäki H., Mäkelä E. A., Ashammakhi N., Viljanen J., Pätiälä H., Kellomaki M., Tormälä P., Rokkanen P. - Strength retention of self-reinforced drawn poly-L/DL-lactide 70/30 (SR-PLA70) rods and fixation properties of distal femoral osteotomies with these rods. An experimental study on rats, J. Biomater. Sci., Polymer Edition 11(12) (2000) 1411–1428. DOI: 10.1163/156856200744318.
Vincent De S., Salaar K., Alonzo T., Applications of PLA in modern medicine, Engineered Regeneration 1 (2020) 76-87. https://doi.org/10.1016/j.engreg.2020.08.002.
RanjbarM., Dehghan Noudeh G., HashemipourM. A., MohamadzadehI. - A systematic study and effect of PLA/Al2O3 nanoscaffolds as dental resins: mechanochemical properties, Artif. Cells Nanomed. Biotechnol. 47 (1) (2019) 201-209. https://doi.org/10.1080/21691401.2018.1548472.
Lee J. B., Ko Y.G., Cho D., Park W. H., Kim B. N., Lee B. C., Kang I. K., Kwon O. H. Modification of PLGA nanofibrous mats by electron beam irradiation for soft tissue regeneration, J. Nanomater. 2015 (2015) 295807. https://doi.org/10.1155/2015/295807.
Liu S., Wu G., Chen X., Zhang X., Yu J., Liu M., Zhang Y., Wang P. - Degradation behavior in vitro of carbon nanotubes (CNTs)/poly(lactic acid) (PLA) composite suture, Polymers 11 (6) (2019) 1015. DOI: 10.3390/polym11061015.
Rankin T. M., Giovinco N. A., Cucher D. J., Watts G., Hurwitz B., Armstrong D. G.- Three-dimensional printing surgical instruments: are we there yet, J. Surg. Res. 189(2) (2014) 193-197. https://doi.org/10.1016/j.jss.2014.02.020.
George M., Aroom K. R., Hawes H. G., Gill B. S., Love J. - 3D printed surgical instruments: the design and fabrication process, World J. Surg. 41 (1) (2017) 314-319. DOI: 10.1007/s00268-016-3814-5.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.