The size-and shape-controlled synthesis of silver nanoparticles by solvothermal method

Nguyen Thi Ngoc Linh, Le The Tam, Ngo Thanh Dung, Le Thi Thanh Tam, Ha Minh Nguyet, Nguyen Dinh Vinh, Bui Minh Quy, Nguyen Thi Hong Hoa, Nguyen Hoa Du, Le Trong Lu, Nguyen Trung Thanh
Author affiliations

Authors

  • Nguyen Thi Ngoc Linh Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City, Viet Nam
  • Le The Tam Vinh University, 182 Le Duan, Vinh City, Nghe An Province, Viet Nam
  • Ngo Thanh Dung Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Le Thi Thanh Tam Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Ha Minh Nguyet Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Dinh Vinh Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City, Viet Nam
  • Bui Minh Quy Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City, Viet Nam
  • Nguyen Thi Hong Hoa Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City, Viet Nam
  • Nguyen Hoa Du Vinh University, 182 Le Duan, Vinh City, Nghe An Province, Viet Nam
  • Le Trong Lu Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Trung Thanh VNU University of Education, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16615

Keywords:

nanoparticles, Ag NPs, nanomaterials, solvothermal method, organic solvents

Abstract

In this work, Ag nanoparticles (NPs) were fabricated by thermal decomposition of silver nitrate in organic solvents in the presence of sodium oleate (SOA) and 1-octadecanol (OCD-ol). The effects of different solvents and concentrations of OCD-ol on the morphology and properties of the Ag nanomaterials were investigated in detail. The structural analysis of the Ag nanomaterials showed good crystallinity. The TEM images of the samples showed that with the change in the fabrication conditions, different sizes and shapes of Ag nanomaterials were formed. The surface plasmon resonance (SPR) properties of the  Ag NPs were influenced by their size and shape. The as-synthesized Ag NPs have potential applications in biomedical, catalysis, or electronics.

Downloads

Download data is not yet available.

References

D’Agostino A., Taglietti A., Desando R., Bini M., Patrini M., Dacarro G., Cucca L., Pallavicini P., and Grisoli P. - Bulk surfaces coated with triangular silver nanoplates: Antibacterial action based on silver release and photo-thermal effect, Nanomaterials 7 (1) (2017) 7-22. doi:10.3390/nano7010007. DOI: https://doi.org/10.3390/nano7010007

Abdel-Fattah W. I. and Ali G. W. - On the anti-cancer activities of silver nanoparticles, J. Appl. Biotechnol. Bioeng. 5 (1) (2018) 43-46. doi: 10.15406/jabb.2018.05.00116. DOI: https://doi.org/10.15406/jabb.2018.05.00116

Konopatsky A. S., Leybo D. V., Firestein K. L., Popov Z. I., Bondarev A. V., Manakhov A. M., Permyakova E. S., Shtansky D. V., and Golberg D. V. - Synthetic routes, structure and catalytic activity of Ag/BN nanoparticle hybrids toward CO oxidation reaction, J. Catal. 368 (2018) 217-227. doi: 10.1016/j.jcat.2018.10.016. DOI: https://doi.org/10.1016/j.jcat.2018.10.016

Siritongsuk P., Hongsing N., Thammawithan S., Daduang S., Klaynongsruang S., Tuanyok A., Patramanon R. - Two-phase bactericidal mechanism of silver nanoparticles against Burkholderia Pseudomallei, PLoS One 11 (12) (2016) 0168098-0168119. doi: 10.1371/journal.pone. DOI: https://doi.org/10.1371/journal.pone.0168098

Zhong Y., Liang G., Jin W., Jian Z., Wu Z., Chen Q., Cai Y., and Zhang W. - Preparation of triangular silver nanoplates by silver seeds capped with citrate-CTA+, RSC Adv. 8 (51) (2018) 28934-28943. doi: 10.1039/c8ra04554b. DOI: https://doi.org/10.1039/C8RA04554B

Furletov A. A., Apyari V. V., Garshev A. V., Dmitrienko S. G., and Zolotov Y. A. - Triangular silver nanoplates as a spectrophotometric reagent for the determination of mercury(II), J. Anal. Chem. 72 (12) (2017) 1203-1207. doi:10.1134/S1061934817120061. DOI: https://doi.org/10.1134/S1061934817120061

Shalaby M. S., Abdallah H., Chetty R., Kumar M. and Shaban A. M. - Silver nano-rods: Simple synthesis and optimization by experimental design methodology, Nano-Structures and Nano-Objects 19 (2019) 100342-100351. doi: 10.1016/j.nanoso.2019.100342. DOI: https://doi.org/10.1016/j.nanoso.2019.100342

Li Y., Kim Y. N., Lee E. J., Cai W. P., and Cho S. O. - Synthesis of silver nanoparticles by electron irradiation of silver acetate, Nucl. Instruments Methods Phys. Res. B 251 (2) (2006) 425-428. doi:10.1016/j.nimb.2006.06.019. DOI: https://doi.org/10.1016/j.nimb.2006.06.019

Arya A., Gupta K., Chundawat T. S., and Vaya D. - Biogenic synthesis of copper and silver nanoparticles using green alga botryococcus braunii and its antimicrobial activity, Bioinorg. Chem. Appl. 2018 (2018) 1-9. doi: 10.1155/2018/7879403. DOI: https://doi.org/10.1155/2018/7879403

Purna G., Rao C., and Yang J. - Chemical reduction method for preparation of silver nanoparticles on a silver chloride substrate for application in surface-enhanced infrared optical sensors, Appl. Spectrosc. 64 (10) (2010) 1094-1099. doi:10.1366/ 000370210792973640. DOI: https://doi.org/10.1366/000370210792973640

Salvioni L., Galbiati E., Collico V., Alessio G., Avvakumova S., Corsi F., Tortora P., Prosperi D., and Colombo M. - Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations, Int. J. Nanomedicine 12 (2017) 2517-2530. doi: 10.2147/IJN.S127799. DOI: https://doi.org/10.2147/IJN.S127799

Hiramatsu H. and Osterloh F. E. - A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants, Chem. Mater. 16 (13) (2004) 2509-2511. doi: 10.1021/cm049532v. DOI: https://doi.org/10.1021/cm049532v

Thanh N. T. K., Maclean A. N., and Mahiddine S. - Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114 (15) (2014) 7610-7630. doi: 10.1021/cr400544s. DOI: https://doi.org/10.1021/cr400544s

Mayer K. M. and Hafner J. H. - Localized surface plasmon resonance sensors, Chem. Rev., 111 (2011) 3828-3857. doi: 10.1021/cr100313v. DOI: https://doi.org/10.1021/cr100313v

LaMer V. K., Dinegar R. H. - Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc. 72 (11) (1950) 4847-4854. doi: 10.1021/ja01167a001. DOI: https://doi.org/10.1021/ja01167a001

Yin Y. and Alivisatos A. P. - Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature 437 (7059) (2005) 664-670. doi:10.1038/nature04165. DOI: https://doi.org/10.1038/nature04165

Downloads

Published

17-04-2023

How to Cite

[1]
Nguyen Thi Ngoc Linh, “The size-and shape-controlled synthesis of silver nanoparticles by solvothermal method”, Vietnam J. Sci. Technol., vol. 61, no. 2, pp. 190–198, Apr. 2023.

Issue

Section

Materials