Synthesis of highly stable silver nanoparticles as computed tomography contrast agents
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16892Keywords:
Nanomaterials, Ag NPs, computed tomography (CT), reduction in organic solvents method, poly (acrylic acid) (PAA)Abstract
In this work, highly stable Ag nanoparticles solution was synthesized using TBAB to reduce Ag+ in the presence of OLA in organic solvents at room temperature, and poly(acrylic acid) (PAA) as a phase transfer ligand in organic solvents. The effects of different solvents on the morphology and properties of the Ag nanomaterials were investigated in detail. The products were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), and absorption spectroscopy. Structural analysis demonstrated that the Ag nanomaterials showed good crystallinity. We have successfully synthesized Ag nanoparticles (Ag NPs) with small particle size (6.1 - 7.3 nm), high uniformity in organic solvents at room temperature. The Ag NPs obtained after phase transformation with PAA are well dispersed, endurance and stability in aqueous solvents. The obtained in-vitro CT imaging results have good X-ray absorption value. These findings suggest the potential application of PAA-coated Ag nanoparticles in the biomedical field, especially in imaging diagnostics using CT computed tomography.
Downloads
References
Rutten A., Prokop M. - Contrast Agents in X-Ray Computed Tomography and Its Applications in Oncology, Anticancer. Agents Med. Chem. 7 (2007) 307. DOI: https://doi.org/10.2174/187152007780618162
Beckett K. R., Moriarity A. K., Langer J. M. - Safe use of contrast media: What the radiologist needs to know, Radiographics. 35 (2015) 1738. DOI: https://doi.org/10.1148/rg.2015150033
Hoffmann M. H. K. - Contrast Agent Application and Protocols, Multislice CT. 8 (2008) 97. DOI: https://doi.org/10.1007/978-3-540-33125-4_8
Mehrizi M., Pascuzzi R. M. - Complications of radiologic contrast in patients with myasthenia gravis, Muscle and Nerve. 50 (2014) 443. DOI: https://doi.org/10.1002/mus.24254
Barrett B. J., Parfrey P. S. - Preventing Nephropathy Induced by Contrast Medium, N. Engl. J. Med. 354 (2006) 379. DOI: https://doi.org/10.1056/NEJMcp050801
Lasser E. C., Lyon S. G., Berry C. C. - Reports on contrast media reactions: Analysis of data from reports to the U.S. Food and Drug Administration, Radiology. 203 (1997) 605. DOI: https://doi.org/10.1148/radiology.203.3.9169676
Hitoshi K., Koichi Y., Takahiro K., Tsutomu T., Peter S., Keiichi. M. - Adverse reactions to ionic and nonionic contrast media, J. Emerg. Med. 175 (1990) 621. DOI: https://doi.org/10.1148/radiology.175.3.2343107
Dheyab M. A., Aziz A. A., Jameel M. S., Khaniabadi P. M., Oglat A. A. - Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents, Appl. Sci. 10, (2020) 7020. DOI: https://doi.org/10.3390/app10207020
Dong Y. C., Maryam H., Maidment P. S. N., Jessica C. H., Pratap C. N., Salim M., Marine B., Johoon K., Peter C., Philippe D., Harold I. L., David P. C. - Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography, Sci. Rep. 9 (2019) 14912. DOI: https://doi.org/10.1038/s41598-019-50332-8
Mahan M. M., Doiron A. L. - Gold Nanoparticles as X-Ray, CT and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology, J. Nanomater. 2018 (2018) 5837276. DOI: https://doi.org/10.1155/2018/5837276
Kong, F. Y., Zhang J. W., Li . F., Wang Z. X., Wang W. J. and Wang W. - Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications, Molecules. 22 (2017) 1445. DOI: https://doi.org/10.3390/molecules22091445
He H., Yang D. P., Liu. M., Wang X., Zhang Z., Zhou G., Liu W., Zhang C. Y., Wen J. - pH-sensitive Au - BSA - DOX - FA nanocomposites for combined CT imaging and targeted drug delivery, Int. J. Nanomedicine. 12 (2017) 2829. DOI: https://doi.org/10.2147/IJN.S128270
Arvizo R., Bhattacharya R., Mukherjee P. - Gold nanoparticles: Opportunities and challenges in nanomedicine, Expert Opin. Drug Deliv. 7 (2010) 753. DOI: https://doi.org/10.1517/17425241003777010
Kim, D., Park, S., Jae, H. L., Yong, Y. J., Jon, S. - Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging, J. Am. Chem. Soc. 129 (2007) 7661. DOI: https://doi.org/10.1021/ja071471p
Hu, X., Zhang, Y., Ding, T., Liu, J., Zhao H. - Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities, Front. Bioeng. Biotechnol. 8 (2020) 990. DOI: https://doi.org/10.3389/fbioe.2020.00990
N. T. Dung., Nguyen T. N. Linh., Dinh L. Chi., Nguyen T. H. Hoa., Nguyen P. Hung., Ngo T. Ha., Pham H. Nam., Nguyen X. Phuc., Le T. Tam and Le. T. Lu. - Optical properties and stability of small hollow gold nanoparticles, RSC Adv.11(2021) 13458. DOI: https://doi.org/10.1039/D0RA09417J
Kim J. S., Kuk. E., Yu. K. N., Kim J.H., Park S. J., Lee H. J., Kim S. H., Park Y. K., Park Y. H., Hwang C. Y., Kim Y.K., Lee Y.S., Cho M.H. - Antimicrobial effects of silver nanoparticles, Nanomedicine Nanotechnology, Biol. Med. 3 (2007) 95. DOI: https://doi.org/10.1016/j.nano.2006.12.001
Galdiero, S., Falanga A., Vitiello M,. Cantisani M., Marra V., Galdiero M. - Silver nanoparticles as potential antiviral agents, Molecules, 16 (2011) 8894. DOI: https://doi.org/10.3390/molecules16108894
Lee S. H., Jun B. H. - Silver nanoparticles: Synthesis and application for nanomedicine, Int. J. Mol. Sci, 20 (2019) 865. DOI: https://doi.org/10.3390/ijms20040865
Sabela M., Balme S., Bechelany M., Janot J. M., Bisetty K. - A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays, Adv. Eng. Mater. 19 (2017) 1700270. DOI: https://doi.org/10.1002/adem.201700270
Ramesh, S., Grijalva M., Debut A., Torre B. G., Albericio F., and Cumbal L. H. - Peptides conjugated to silver nanoparticles in biomedicine-a ‘value-added’ phenomenon, Biomater. Sci. 4 (2016) 1713. DOI: https://doi.org/10.1039/C6BM00688D
Zou, J., Hannula M., Misra., Feng H., Labrador R. H., Aula A. S., Hyttinen J., and Pyykkö I. - Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection, J. Nanobiotechnology. 13 (2015) 1. DOI: https://doi.org/10.1186/s12951-015-0065-9
Lee, E. M., Lee J., Kim Y., Yi K. S., Cho J., Kim J., An J. M., Lee D., Kim S. J., An E., Hong Y. J., Jo H., Lee S. H., Jung Y., Choi C.H., Kang J. S., Hur J., and Kim D. - Hybrid Composite of Silver Nanoparticle-Porous Silicon Microparticles as an Image-Guided Localization Agent for Computed Tomography Scan of the Lungs, ACS Biomater. Sci. Eng. 6 (2020) 4390. DOI: https://doi.org/10.1021/acsbiomaterials.0c00611
Li, Z., Tian L., Liu J., Qi W., Wu Q., Wang H., Ali M. C., Wu W., and Qiu H. Graphene Oxide/Ag Nanoparticles Cooperated with Simvastatin as a High Sensitive X-Ray Computed Tomography Imaging Agent for Diagnosis of Renal Dysfunctions, Adv. Healthc. Mater. 6 (2017) 1700413. DOI: https://doi.org/10.1002/adhm.201700413
S. Peng., Y. Lee., C. Wang., H. Yin., S. Dai., and S. Sun. -A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation, Nano Res. 1 (2008) 229. DOI: https://doi.org/10.1007/s12274-008-8026-3
L.T. Tam., N. H. Du., N. T. N. Linh., P. T. H. Tuyet., H. D. Quang., N. T. Vuong., L.T. t. Hiep., V. T. K. Oanh., L. D. Duong., L. T. Lu., T. D. Lam. - Facile Fabrication of Fe3O4@poly(acrylic) Acid Based Ferrofluid with Magnetic Resonance Imaging Contrast Effect, ChemistrySelect. 5(2020) 12915. DOI: https://doi.org/10.1002/slct.202003015
Hoa D. N., Tam T. L., Linh T. N. N., Tuyet T. H. P., Quang D. H., Nam H. P., Vuong T. N., Lu T. L., Lam D. T. Molecular Imaging Contrast Properties of Fe3O4-Au Hybrid Nanoparticles for Dual-Mode MR/CT Imaging Applications, ChemistrySelect. 6 (2021) 9389. DOI: https://doi.org/10.1002/slct.202102791
Thanh N. T. K., Maclean N. A., Mahiddine S. - Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114 (2014) 7610. DOI: https://doi.org/10.1021/cr400544s
Lu, L. T., Dung N. T., Tung L. D., Thanh C. T., Quy O.K., Chuc N.V., Maenosono S., and Thanh N. T. K.- Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: The influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale. 7, 19596–19610 (2015). DOI: https://doi.org/10.1039/C5NR04266F
Kathryn. M. M., and Jason H. H. - Localized surface plasmon resonance Sensors, Chem. Rev. 111 (2011) 3828. DOI: https://doi.org/10.1021/cr100313v
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.