Synthesis of highly stable silver nanoparticles as computed tomography contrast agents

Linh Nguyen Thi Ngoc, Le The Tam
Author affiliations

Authors

  • Linh Nguyen Thi Ngoc Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City, Thai Nguyen Province, Viet Nam
  • Le The Tam Vinh University, 182 Le Duan, Vinh City, Nghe An Province, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16892

Keywords:

Nanomaterials, Ag NPs, computed tomography (CT), reduction in organic solvents method, poly (acrylic acid) (PAA)

Abstract

In this work, highly stable Ag nanoparticles solution was synthesized using TBAB to reduce Ag+ in the presence of OLA in organic solvents at room temperature, and poly(acrylic acid) (PAA) as a phase transfer ligand in organic solvents. The effects of different solvents on the morphology and properties of the Ag nanomaterials were investigated in detail. The products were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), and absorption spectroscopy. Structural analysis demonstrated that the Ag nanomaterials showed good crystallinity. We have successfully synthesized Ag nanoparticles (Ag NPs) with small particle size (6.1 - 7.3 nm), high uniformity in organic solvents at room temperature. The Ag NPs obtained after phase transformation with PAA are well dispersed, endurance and stability in aqueous solvents. The obtained in-vitro CT imaging results have good X-ray absorption value. These findings suggest the potential application of PAA-coated Ag nanoparticles in the biomedical field, especially in imaging diagnostics using CT computed tomography.  

Downloads

Download data is not yet available.

References

Rutten A., Prokop M. - Contrast Agents in X-Ray Computed Tomography and Its Applications in Oncology, Anticancer. Agents Med. Chem. 7 (2007) 307. DOI: https://doi.org/10.2174/187152007780618162

Beckett K. R., Moriarity A. K., Langer J. M. - Safe use of contrast media: What the radiologist needs to know, Radiographics. 35 (2015) 1738. DOI: https://doi.org/10.1148/rg.2015150033

Hoffmann M. H. K. - Contrast Agent Application and Protocols, Multislice CT. 8 (2008) 97. DOI: https://doi.org/10.1007/978-3-540-33125-4_8

Mehrizi M., Pascuzzi R. M. - Complications of radiologic contrast in patients with myasthenia gravis, Muscle and Nerve. 50 (2014) 443. DOI: https://doi.org/10.1002/mus.24254

Barrett B. J., Parfrey P. S. - Preventing Nephropathy Induced by Contrast Medium, N. Engl. J. Med. 354 (2006) 379. DOI: https://doi.org/10.1056/NEJMcp050801

Lasser E. C., Lyon S. G., Berry C. C. - Reports on contrast media reactions: Analysis of data from reports to the U.S. Food and Drug Administration, Radiology. 203 (1997) 605. DOI: https://doi.org/10.1148/radiology.203.3.9169676

Hitoshi K., Koichi Y., Takahiro K., Tsutomu T., Peter S., Keiichi. M. - Adverse reactions to ionic and nonionic contrast media, J. Emerg. Med. 175 (1990) 621. DOI: https://doi.org/10.1148/radiology.175.3.2343107

Dheyab M. A., Aziz A. A., Jameel M. S., Khaniabadi P. M., Oglat A. A. - Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents, Appl. Sci. 10, (2020) 7020. DOI: https://doi.org/10.3390/app10207020

Dong Y. C., Maryam H., Maidment P. S. N., Jessica C. H., Pratap C. N., Salim M., Marine B., Johoon K., Peter C., Philippe D., Harold I. L., David P. C. - Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography, Sci. Rep. 9 (2019) 14912. DOI: https://doi.org/10.1038/s41598-019-50332-8

Mahan M. M., Doiron A. L. - Gold Nanoparticles as X-Ray, CT and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology, J. Nanomater. 2018 (2018) 5837276. DOI: https://doi.org/10.1155/2018/5837276

Kong, F. Y., Zhang J. W., Li . F., Wang Z. X., Wang W. J. and Wang W. - Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications, Molecules. 22 (2017) 1445. DOI: https://doi.org/10.3390/molecules22091445

He H., Yang D. P., Liu. M., Wang X., Zhang Z., Zhou G., Liu W., Zhang C. Y., Wen J. - pH-sensitive Au - BSA - DOX - FA nanocomposites for combined CT imaging and targeted drug delivery, Int. J. Nanomedicine. 12 (2017) 2829. DOI: https://doi.org/10.2147/IJN.S128270

Arvizo R., Bhattacharya R., Mukherjee P. - Gold nanoparticles: Opportunities and challenges in nanomedicine, Expert Opin. Drug Deliv. 7 (2010) 753. DOI: https://doi.org/10.1517/17425241003777010

Kim, D., Park, S., Jae, H. L., Yong, Y. J., Jon, S. - Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging, J. Am. Chem. Soc. 129 (2007) 7661. DOI: https://doi.org/10.1021/ja071471p

Hu, X., Zhang, Y., Ding, T., Liu, J., Zhao H. - Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities, Front. Bioeng. Biotechnol. 8 (2020) 990. DOI: https://doi.org/10.3389/fbioe.2020.00990

N. T. Dung., Nguyen T. N. Linh., Dinh L. Chi., Nguyen T. H. Hoa., Nguyen P. Hung., Ngo T. Ha., Pham H. Nam., Nguyen X. Phuc., Le T. Tam and Le. T. Lu. - Optical properties and stability of small hollow gold nanoparticles, RSC Adv.11(2021) 13458. DOI: https://doi.org/10.1039/D0RA09417J

Kim J. S., Kuk. E., Yu. K. N., Kim J.H., Park S. J., Lee H. J., Kim S. H., Park Y. K., Park Y. H., Hwang C. Y., Kim Y.K., Lee Y.S., Cho M.H. - Antimicrobial effects of silver nanoparticles, Nanomedicine Nanotechnology, Biol. Med. 3 (2007) 95. DOI: https://doi.org/10.1016/j.nano.2006.12.001

Galdiero, S., Falanga A., Vitiello M,. Cantisani M., Marra V., Galdiero M. - Silver nanoparticles as potential antiviral agents, Molecules, 16 (2011) 8894. DOI: https://doi.org/10.3390/molecules16108894

Lee S. H., Jun B. H. - Silver nanoparticles: Synthesis and application for nanomedicine, Int. J. Mol. Sci, 20 (2019) 865. DOI: https://doi.org/10.3390/ijms20040865

Sabela M., Balme S., Bechelany M., Janot J. M., Bisetty K. - A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays, Adv. Eng. Mater. 19 (2017) 1700270. DOI: https://doi.org/10.1002/adem.201700270

Ramesh, S., Grijalva M., Debut A., Torre B. G., Albericio F., and Cumbal L. H. - Peptides conjugated to silver nanoparticles in biomedicine-a ‘value-added’ phenomenon, Biomater. Sci. 4 (2016) 1713. DOI: https://doi.org/10.1039/C6BM00688D

Zou, J., Hannula M., Misra., Feng H., Labrador R. H., Aula A. S., Hyttinen J., and Pyykkö I. - Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection, J. Nanobiotechnology. 13 (2015) 1. DOI: https://doi.org/10.1186/s12951-015-0065-9

Lee, E. M., Lee J., Kim Y., Yi K. S., Cho J., Kim J., An J. M., Lee D., Kim S. J., An E., Hong Y. J., Jo H., Lee S. H., Jung Y., Choi C.H., Kang J. S., Hur J., and Kim D. - Hybrid Composite of Silver Nanoparticle-Porous Silicon Microparticles as an Image-Guided Localization Agent for Computed Tomography Scan of the Lungs, ACS Biomater. Sci. Eng. 6 (2020) 4390. DOI: https://doi.org/10.1021/acsbiomaterials.0c00611

Li, Z., Tian L., Liu J., Qi W., Wu Q., Wang H., Ali M. C., Wu W., and Qiu H. Graphene Oxide/Ag Nanoparticles Cooperated with Simvastatin as a High Sensitive X-Ray Computed Tomography Imaging Agent for Diagnosis of Renal Dysfunctions, Adv. Healthc. Mater. 6 (2017) 1700413. DOI: https://doi.org/10.1002/adhm.201700413

S. Peng., Y. Lee., C. Wang., H. Yin., S. Dai., and S. Sun. -A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation, Nano Res. 1 (2008) 229. DOI: https://doi.org/10.1007/s12274-008-8026-3

L.T. Tam., N. H. Du., N. T. N. Linh., P. T. H. Tuyet., H. D. Quang., N. T. Vuong., L.T. t. Hiep., V. T. K. Oanh., L. D. Duong., L. T. Lu., T. D. Lam. - Facile Fabrication of Fe3O4@poly(acrylic) Acid Based Ferrofluid with Magnetic Resonance Imaging Contrast Effect, ChemistrySelect. 5(2020) 12915. DOI: https://doi.org/10.1002/slct.202003015

Hoa D. N., Tam T. L., Linh T. N. N., Tuyet T. H. P., Quang D. H., Nam H. P., Vuong T. N., Lu T. L., Lam D. T. Molecular Imaging Contrast Properties of Fe3O4-Au Hybrid Nanoparticles for Dual-Mode MR/CT Imaging Applications, ChemistrySelect. 6 (2021) 9389. DOI: https://doi.org/10.1002/slct.202102791

Thanh N. T. K., Maclean N. A., Mahiddine S. - Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114 (2014) 7610. DOI: https://doi.org/10.1021/cr400544s

Lu, L. T., Dung N. T., Tung L. D., Thanh C. T., Quy O.K., Chuc N.V., Maenosono S., and Thanh N. T. K.- Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: The influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale. 7, 19596–19610 (2015). DOI: https://doi.org/10.1039/C5NR04266F

Kathryn. M. M., and Jason H. H. - Localized surface plasmon resonance Sensors, Chem. Rev. 111 (2011) 3828. DOI: https://doi.org/10.1021/cr100313v

Downloads

Published

05-04-2023

How to Cite

[1]
L. Nguyen Thi Ngoc and Le The Tam, “Synthesis of highly stable silver nanoparticles as computed tomography contrast agents”, Vietnam J. Sci. Technol., vol. 61, no. 3, pp. 394–404, Apr. 2023.

Issue

Section

Materials

Most read articles by the same author(s)