Direct-printing fabrication and characterization of rGO-CuS buckypaper electrode for supercapacitor

Doan Thanh Tung, Le Thi Thanh Tam, Hoang Tran Dung, Nguyen Thi Yen, Ngo Ba Thanh, Ngo Thanh Dung, Le Trong Lu
Author affiliations

Authors

  • Doan Thanh Tung Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi ; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0002-2158-1735
  • Le Thi Thanh Tam Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi ; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Hoang Tran Dung Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Yen Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Ngo Ba Thanh Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Ngo Thanh Dung Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Le Trong Lu Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi ; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17618

Keywords:

electrode, nanomaterials, supercapacitors, 3D printer, sulfide metal, graphene

Abstract

In this study, Buckypaper (BP) is fabricated by vacuum filtering method, used as a current collector for supercapacitors (SC). This BP is then directly printed with rGO-CuS hybrid nanomaterial ink onto its surface via a custom 3D printer. The structure of material components is characterized using transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). Also, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) analyses are conducted to estimate the electrochemical performance. The results show that the fabricated SC electrode is of good quality with a specific capacitance of 680.9 F/g at a scan rate of 5 mV/s. Besides, the electrode also has characteristic redox peaks and a stability of 94.3 % after 6000 discharges at a current density of 25 A/g.

Downloads

References

1. Iijima S. - Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58. https://doi.org/10.1038/354056a0.

2. Collins P. G., Avouris P. - Nanotubes for electronics, Sci. Am. 283(6) (2000) 62-9. DOI: 10.1038/scientificamerican1200-62.

3. Balandin A. A. - Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (8) (2011) 569-81. https://doi.org/10.1038/nmat3064.

4. Ibrahim K. S. - Carbon nanotubes-properties and applications: a review, Carbon Letters 14 (3) (2013) 131-144. https://doi.org/10.5714/CL.2013.14.3.131.

5. Byrne M. T. and Gun’ko Y. K. - Recent advances in research on carbon nanotube–polymer composites, Advanced Materials 22 (15) (2010) 1672-1688. https://doi.org/10.1002/ adma.200901545

6. Amrollahi A., Rashidi A. M., Meibodi M. E., Kashefi K. - Conduction heat transfer characteristics and dispersion behaviour of carbon nanofluids as a function of different parameters, J. Exp. Nanosci. 4 (4) (2009) 347-63. https://doi.org/10.1080/ 17458080902929929.

7. Andrews R., Weisenberger M. C. - Carbon nanotube polymer composites, Current Opinion in Solid State and Materials Science 8 (1) (2004) 31-37. https://doi.org/10.1016/j.progpolymsci. 2009.09.003.

8. Spitalsky Z., Tasis D., Papagelis K., and Galiotis C. - Carbon Nanotube-Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties, Progress in Polymer Science 35 (3) (2010) 357-401. https://doi.org/10.1016/ j.progpolymsci.2009.09.003.

9. Patel M. D., Cha E., Choudhary N., Kang C., Lee W., Hwang J. Y., and Choi W. - Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries, Nanotechnology 27 (2016) 495401. https://doi.org/10.1088/0957-4484/27/49/495401.

10. Tan S. C., Li J. J., Zhou L. J., Chen P., Shi J. T. and Xu Z. Y. - Modified carbon fiber paper-based electrodes wrapped by conducting polymers with enhanced electrochemical performance for supercapacitors, Polymers. 10 (2018) 1072. https://doi.org/ 10.3390/polym10101072.

11. Sun C., Li X., Cai Z. S., and Ge F. Y. - Carbonized cotton fabric in-situ electrodeposition polypyrrole as high-performance flexible electrode for wearable supercapacitor, Electrochim. Acta. 296 (2019) 617-626. https://doi.org/10.1016/j.electacta.2018.11.045.

12. Zhang X. L., Lin Q. L., Zhang X. Q. and Peng K. P. - A novel 3D conductive network-based polyaniline/graphitic mesoporouscarbon composite electrode with excellent electrochemical performance, J. Power Sources 401 (2018) 278-286. https://doi.org/ 10.1016/j.jpowsour. 2018.08.091.

13. Zhu C., Mu X., Van A. P. A., Maier J., and Yu Y. - Fast Li storage in MoS2-Graphene-Carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures, Adv. Energy Mater. 5 (2015) 1401170. https://doi.org/10.1002/aenm. 201401170.

14. Popov K. M., Arkhipov V. E., Kurenya A. G., Fedorovskaya E. O., Kovalenko K. A., Okotrub A. V., Bulusheva L. G. - Supercapacitor performance of binder-free buckypapers from multiwall carbon nanotubes synthesized at different temperatures, Phys. Status Solidi B 253 (2016) 2406-2412. https://doi.org/10.1002/pssb.201600240.

15. Susantyoko R. A., Parveen F., Mustafa I., Almheiri S. - MWCNT/activated-carbon freestanding sheets: a different approach to fabricate flexible electrodes for supercapacitors, Ionics. 25 (2019) 265-273. https://doi.org/10.1007/s11581-018-2585-4.

16. Yi-Hsuan L., Shivam G., Chung-Hsuan H., Chi-Young L., Nyan-Hwa T. – Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors, Electrochimica Acta. 354 (2020) 136744. https://doi.org/10.1016/j.electacta.2020.136744.

17. Wang X., Wei H., Liu X., Du W., Zhao X., Wang X. - Novel three-dimensional polyaniline nanothorns vertically grown on buckypaper as high-performance supercapacitor electrode, Nanotechnology. 30 (2019) 325401-325408. DOI: 10.1088/1361-6528/ab156d.

18. Iurchenkova A. A., Fedorovskaya E. O., Asanov I. P., Arkhipov V. E., Popov K. M., Baskakova K. I., Okotrub A. V. - MWCNT buckypaper/polypyrrole nanocomposites for supercapasitor application, Electrochimica Acta. 335 (2020) 135700. https://doi.org/10.1016/j.electacta.2020.135700.

19. Le T. T. T., Doan T. T., Ngo T. D., Phan N. H., Pham V. H., Phan N. M., and Le T. L. - Synthesis and Electrochemical Characterization of NiCo2S4 Nanosheets/reduced Graphene Oxide for Energy Storage Applications, Communications in Physics 30 (4) (2020) 399. https://doi.org/10.15625/0868-3166/30/4/15448.

20. Tung D. T., Dung H. T., Dung N. T., Hong P. N., Nguyet H. M., Van-Quynh N., Van Chuc N., Trung V. Q., Lu L. T., Minh, P. N. - Freeze gelation 3D printing of rGO-CuCo2S4 nanocomposite for high-performance supercapacitor electrodes. Electrochimica Acta. 392 (2021) 138992. https://doi.org/10.1016/j.electacta.2021.138992.

21. Ha M. Nguyet, Le T. T. Tam, Doan T. Tung, Nguyen T. Yen, Hoang T. Dung, Ngo T. Dung, Phan N. Hong, Le A. Tuan, Phan N. Minh and Le T. Lu - Facile synthesis of MnCo2S4 nanosheets as a binder-free electrode material for high performance supercapacitor applications, New J. Chem. 46 (2022) 13996-14003. https://doi.org/ 10.1039/D1NJ05809F.

22. Thanh Tam L. T., Tung D. T., Nguyet H. M., Ngoc Linh N. T., Dung N. T., Van Quynh N., Van Dang N., Vernardou D., Le T. K., Tuan L. A., Minh P. N., Lu L. T. - High electrochemical performance of ink solution based on manganese cobalt sulfide/reduced graphene oxide nano-composites for supercapacitor electrode materials, RSC Adv. 12 (31) (2022) 20182-20190. https://doi.org/10.1039/D2RA02818B.

23. Tam Le T. T., Hung N. V., Tung D. T., Dung N. T., Dung H. T., Nam P. T., Minh P. N., Hong P. N., Lu L. T. - Synthesis and electrochemical properties of porous CNTs-Ferrite hybrid nanostructures for Supercapacitor, Vietnam J. Sci. Technol. 57 (2019) 58. https://doi.org/ 10.15625/2525-2518/57/1/12801.

24. Tung D. T., Tam Le T. T., Dung H. T., Dung Ngo T., Dung Nguyen T., Hoang Thai, Lam T. D., Minh P. N., Thu T. V., Hong P. N., Lu L. T. - Direct Ink Writing of Graphene–Cobalt Ferrite Hybrid Nanomaterial for Supercapacitor Electrodes, J. Electron. Mater. 49 (2020) 4671. https://doi.org/10.1007/s11664-020-08165-z.

25. Oliveira A. E. F., Braga G. B., Tarley C. R. T., Pereira A. C. - Thermally reduced graphene oxide: synthesis, studies and characterization, J. Mater. Sci. 53 (2018) 12005-12015. https://doi.org/10.1007/s10853-018-2473-3.

26. Htwe Y. Z. N., Abdullah M. K., Mariatti M. - Effect of sodium dodecyl concentration on the properties of graphene conductive inks, Materials Today: Proceedings 66 (5) (2022) 2836-2839. https://doi.org/10.1016/j.matpr.2022.06.525.

27. Ersin Y., Mehmet D., Yasemin T. - Effect of sodium dodecyl sulfate on thermal properties of polyvinyl alcohol (PVA)/modified single-walled carbon nanotube (SWCNT) nanocomposites, Diamond and Related Materials 115 (2021) 108359.

28. Kalyan Ghosh and Suneel Kumar Srivastava - Enhanced Supercapacitor Performance and Electromagnetic Interference Shielding Effectiveness of CuS Quantum Dots Grown on Reduced Graphene Oxide Sheets, ACS Omega 6 (7) (2021) 4582-4596. https://doi.org/ 10.1021/acsomega.0c05034.

29. Heydari H., Moosavifard S. E., Shahraki M., Elyasi S. - Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes, Journal of Energy Chemistry 26 (4) (2017) 762-767. https://doi.org/10.1016/j.jechem.2017.03.007.

30. Soliman I. El-Hout, Saad G. Mohamed, Amira G., Sayed Y. Attia, Ahmed S., Said M. El-Sheikh - High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications, Journal of Energy Storage 34 (2021) 102001. https://doi.org/ 10.1016/j.est.2020.102001.

Downloads

Published

28-02-2025

How to Cite

[1]
Doan Thanh Tung, “Direct-printing fabrication and characterization of rGO-CuS buckypaper electrode for supercapacitor”, Vietnam J. Sci. Technol., vol. 63, no. 1, pp. 52–62, Feb. 2025.

Issue

Section

Materials

Most read articles by the same author(s)