Evaluation of anti-inflammatory compounds isolated from Millettia dielsiana Harms ex Diels by molecular docking method
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16469Keywords:
molecular docking, cyclooxygenase-1, cyclooxygenase-2, anti-inflammation, Millettia dielsianaAbstract
In this study, we focused on screening and simulating the interaction between anti-inflammatory proteins and 50 compounds isolated from Millettia dielsiana Harms ex Diels. 39 out of 50 compounds that violated no of Lipinski’s rule of five were sorted out as favorable for drug development and selected for studies further. Then, a molecular docking study of compounds into the binding sites of COX-1 and COX-2 allowed shedding light on the binding mode of these potential COX inhibitors performed using Autodock Vina software. Our results showed that 6 compounds, including millesianin E (D32), barbigerone (D18), millesianin D (D31), (+)-epicatechin (D11), durallone (D17), and ichthynone (D19) exhibited good binding energy with the cyclooxygenase-2 (COX-2) enzyme meanwhile all of the selected compounds exhibited poor binding energy to the cyclooxygenase-1 (COX-1) enzyme. The binding energies of these compounds range from -8.6 kcal/mol to -9.0 kcal/mol better than the standard compounds Valdecoxib and Lumiracoxib. In addition, an analysis of the COX-2 enzyme and selected compounds binding was also presented. The important binding modes shown at the active site of the COX-2 enzyme through hydrogen bonds compared with standard compounds showed this as potential candidates against this enzyme. Therefore, these results might give a positive signal in finding anti-inflammatory drugs from Millettia dielsiana.
Downloads
References
Falcão H. S., Lima I. O., Santos V. L., Dantas H. F., Diniz M. F.F.M., Barbosa-Filho J. M., Batista L. M. - Review of the plants with anti-inflammatory activity studied in Brazil, Rev. Bras. Farmacogn 15 (4) (2005) 381-391. https://doi.org/10.1590/S0102695 X2005000400020. DOI: https://doi.org/10.1590/S0102-695X2005000400020
Rathee P., Chaudhary H., Rathee S., Rathee D., Kumar V. and Kohli K. - Mechanism of Action of Flavonoids as Anti-inflammatory Agents: A Review, Inflamm. Allergy Drug Targets. 8 (3) (2009) 229-235. https://doi.org/10.2174/187152809788681029. DOI: https://doi.org/10.2174/187152809788681029
Graham D. J. - COX-2 Inhibitors, Other NSAIDs, and Cardiovascular Risk:
The seduction of common sense, JAMA. 296 (13) (2006) 1653-1656. https://doi.org/ 10.1001/ jama.296.13.jed60058. DOI: https://doi.org/10.1001/jama.296.13.jed60058
Nguyen T. B. - The plants list of Vietnam, Agricultural Publisher, Ha Noi, 2003 (in Vietnamese).
Do H. B., Dang Q. C., Bui X. C., Nguyen T. D., Do T. D., Pham V. H., Vu N. L., Pham D. M., Pham K. M., Doan T. N., et al. - The medicinal plants and animals in Vietnam, Science and Technics Publishing House, Ha Noi, 2006 (in Vietnamese).
Le D. D., Nguyen T. M. T., Ngo V. D., Bui T. T. L., Chu T. T. H., Jang H. J., Dang T. T., Tran T. H., Le H. T., Nguyen V. T., et al. - Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels, Carbohydr. Res. 484 (2019) 1-5. https://doi.org/10.1016/j.carres.2019.107778. DOI: https://doi.org/10.1016/j.carres.2019.107778
Ye H., Wu W., Liu Z., Xie C., Tang M., Li S., Yang J., Tang H., Chen K., Long C., et al. - Bioactivity-guided isolation of anti-inflammatory flavonoids from the stems of Millettia dielsiana Harms, Fitoterapia. 95 (2014) 154-159. https://doi.org/10.1016/j.fitote. 2014.03.008. DOI: https://doi.org/10.1016/j.fitote.2014.03.008
Gong T., Wang H. Q. and Chen R. Y. - Isoflavones from vine stem of Millettia dielsiana, Zhongguo Zhong Yao Za Zhi. 32 (20) (2007) 2138-2140. PMID: 18306746.
Gong T., Wang D. X., Chen R. Y., Liu P. and Yu D. Q. - Novel Benzil and
Isoflavone Derivatives from Millettia dielsiana, Planta Med. 75 (3) (2009) 236-242. https://doi.org/10.1055/s-0028-1112203. DOI: https://doi.org/10.1055/s-0028-1112203
Gong T., Zhang T., Wang D. X., Chen R. Y., Liu P. and Yu D. Q. - Two new isoflavone glycosides from the vine stem of Millettia dielsiana, J. Asian Nat. Prod. Res. 16 (2) (2013) 181-186. https://doi.org/10.1080/10286020.2013.860967. DOI: https://doi.org/10.1080/10286020.2013.860967
Kim H. P., Son K. H., Chang H. W. and Kang S. S. - Anti-inflammatory Plant Flavonoids and Cellular Action Mechanisms, J. Pharmacol. Sci. 96 (3) (2004) 229-245. https://doi.org/10.1254/jphs.crj04003x. DOI: https://doi.org/10.1254/jphs.CRJ04003X
Ribeiro D., Freitas M., Tomé S. M., Silva A.M.S., Laufer S., Lima J.F.C.L. and Fernandes E. - Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood, Inflammation. 38 (2) (2014) 858-870. https://doi.org/10.1007/ s10753-014-9995-x. DOI: https://doi.org/10.1007/s10753-014-9995-x
Marvin JS was used for drawing, displaying and characterizing chemical
structures, substructures and reactions, Marvin JS version 21.13.0, ChemAxon https://www.chemaxon.com.
Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment, Release 2017; Dassault Systèmes: San Diego, CA. USA, 2017. https://www.3ds.com.
Allouche A.R. - Gabedit-A graphical user interface for computational chemistry softwares, J. Comput. Chem. 32 (1) (2011) 174-182. https://doi.org/10.1002/jcc.21600. DOI: https://doi.org/10.1002/jcc.21600
Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S. and Olson A. J. - Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (16) (2009) 2785-2791. https://doi.org/ 10.1002/jcc.21256. DOI: https://doi.org/10.1002/jcc.21256
Miciaccia M., Belviso B. D., Iaselli M., Cingolani G., Ferorelli S., Cappellari M., Polosa P. L., Perrone M. G., Caliandro R., Scilimati A. - Three‑dimensional structure of human cyclooxygenase (hCOX)‑1, Sci. Rep. 11 (1) (2021) 1-18. https://doi.org/10.1038/s41598-021-83438-z. DOI: https://doi.org/10.1038/s41598-021-83438-z
Orlando B. J. and Malkowski M. G. - Crystal structure of rofecoxib bound to
human cyclooxygenase-2, Acta Cryst. 72 (10) (2016) 772-776. https://dx.doi.org/ 10.1107/S2053230X16014230. DOI: https://doi.org/10.1107/S2053230X16014230
Yang C., Li P., Wang P. and Zhu B. T. - Mechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin, J. Mol. Graph. 107 (2021) 1-11. https://doi.org/10.1016/j.jmgm.2021.107941. DOI: https://doi.org/10.1016/j.jmgm.2021.107941
Lipinski C. A. - Lead- and drug-like compounds: the rule-of-five revolution, Drug Discov. Today Technol. 1 (4) (2004) 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007. DOI: https://doi.org/10.1016/j.ddtec.2004.11.007
Benet L. Z., Hosey C. M., Ursu O., Oprea, T. I. - BDDCS, the Rule of 5 and Drugability, Adv. Drug Deliv. Rev. 101 (2016)89-98. https://doi.org/10.1016/j.addr.2016.05.007. DOI: https://doi.org/10.1016/j.addr.2016.05.007
Drug Likeness Tool - DruLito (2019), http://www.niper.gov.in/pi_dev_tools/ DruLiToWeb/DruLiTo_index.html.
Trott O. and Olson A. J. - AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2) (2010) 455-161. https://doi.org/10.1002/jcc.21334. DOI: https://doi.org/10.1002/jcc.21334
Duggan K. C., Walters M. J., Musee J., Harp J. M., Kiefer J. R., Oates J. A. and
Marnett L. J. - Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen, J. Biol. Chem. 285(45) (2010) 34950-34959. https://doi.org/10.1074/jbc.M110.162982. DOI: https://doi.org/10.1074/jbc.M110.162982
García Rodríguez L. A., Cattaruzzi C., Troncon M. G. and Agostinis L. - Risk of hospitalization for upper gastrointestinal tract bleeding associated with ketorolac, other nonsteroidal anti-inflammatory drugs, calcium antagonists, and other antihypertensive drugs, Arch. Intern. Med. 158 (1) (1998) 33-39. https://doi.org/10.1001/ archin7te.158.1.33. DOI: https://doi.org/10.1001/archinte.158.1.33
Pran K. D., Raghu P. M., Bilal A. J. and Mohamed J. S. - Molecular Basis of Binding Interactions of NSAIDs and Computer-Aided Drug Design Approaches in the Pursuit of the Development of Cyclooxygenase-2 (COX-2) Selective Inhibitors, Nonsteroidal Anti-Inflammatory Drugs, Intech Open, London, 2017, 101-121.
Perrone M. G., Scilimati A., Simone L. and Vitale P. - Selective COX-1 Inhibition: A Therapeutic Target to be Reconsidered, Curr. Med. Chem. 17 (32) (2010) 3769-3805. https://doi:10.2174/092986710793205408. DOI: https://doi.org/10.2174/092986710793205408
Wei Z., Yang Y., Xie C., Li C., Wang G., Ma L., Xiang M., Sun J., Wei Y., and Chen L. - Synthesis and Biological Evaluation of Pyranoisoflavone Derivatives as Anti-Inflammatory Agents, Fitoterapia. 97 (2014) 172-183. https://doi:10.1016/j.fitote. 2014.06.002. DOI: https://doi.org/10.1016/j.fitote.2014.06.002
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.