Evaluation of anti-inflammatory compounds isolated from Millettia dielsiana Harms ex Diels by molecular docking method

Nguyen Xuan Ha, Vu Thi Thu Le, Do Tien Lam, Pham Minh Quan, Vu Thanh Dat
Author affiliations


  • Nguyen Xuan Ha Institute of Natural Products Chemistry, Vietnam Academy of Science and Tecnology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam https://orcid.org/0000-0002-8779-256X
  • Vu Thi Thu Le Thai Nguyen University of Agriculture and Forestry, Quyet Thang, Thai Nguyen City, Viet Nam
  • Do Tien Lam Institute of Natural Products Chemistry, Vietnam Academy of Science and Tecnology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam
  • Pham Minh Quan Institute of Natural Products Chemistry, Vietnam Academy of Science and Tecnology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam
  • Vu Thanh Dat Institute of Natural Products Chemistry, Vietnam Academy of Science and Tecnology, 8 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam




molecular docking, cyclooxygenase-1, cyclooxygenase-2, anti-inflammation, Millettia dielsiana


In this study, we focused on screening and simulating the interaction between anti-inflammatory proteins and 50 compounds isolated from Millettia dielsiana Harms ex Diels. 39 out of 50 compounds that violated no of Lipinski’s rule of five were sorted out as favorable for drug development and selected for studies further. Then, a molecular docking study of compounds into the binding sites of COX-1 and COX-2 allowed shedding light on the binding mode of these potential COX inhibitors performed using Autodock Vina software. Our results showed that 6 compounds, including millesianin E (D32), barbigerone (D18), millesianin D (D31), (+)-epicatechin (D11), durallone (D17), and ichthynone (D19) exhibited good binding energy with the cyclooxygenase-2 (COX-2) enzyme meanwhile all of the selected compounds exhibited poor binding energy to the cyclooxygenase-1 (COX-1) enzyme. The binding energies of these compounds range from -8.6 kcal/mol to -9.0 kcal/mol better than the standard compounds Valdecoxib and Lumiracoxib. In addition, an analysis of the COX-2 enzyme and selected compounds binding was also presented. The important binding modes shown at the active site of the COX-2 enzyme through hydrogen bonds compared with standard compounds showed this as potential candidates against this enzyme. Therefore, these results might give a positive signal in finding anti-inflammatory drugs from Millettia dielsiana.


Download data is not yet available.


Falcão H. S., Lima I. O., Santos V. L., Dantas H. F., Diniz M. F.F.M., Barbosa-Filho J. M., Batista L. M. - Review of the plants with anti-inflammatory activity studied in Brazil, Rev. Bras. Farmacogn 15 (4) (2005) 381-391. https://doi.org/10.1590/S0102695 X2005000400020. DOI: https://doi.org/10.1590/S0102-695X2005000400020 https://doi.org/10.1590/S0102695 X2005000400020.">

Rathee P., Chaudhary H., Rathee S., Rathee D., Kumar V. and Kohli K. - Mechanism of Action of Flavonoids as Anti-inflammatory Agents: A Review, Inflamm. Allergy Drug Targets. 8 (3) (2009) 229-235. https://doi.org/10.2174/187152809788681029. DOI: https://doi.org/10.2174/187152809788681029 https://doi.org/10.2174/187152809788681029.">

Graham D. J. - COX-2 Inhibitors, Other NSAIDs, and Cardiovascular Risk:

The seduction of common sense, JAMA. 296 (13) (2006) 1653-1656. https://doi.org/ 10.1001/ jama.296.13.jed60058. DOI: https://doi.org/10.1001/jama.296.13.jed60058 https://doi.org/ 10.1001/ jama.296.13.jed60058.">

Nguyen T. B. - The plants list of Vietnam, Agricultural Publisher, Ha Noi, 2003 (in Vietnamese).

Do H. B., Dang Q. C., Bui X. C., Nguyen T. D., Do T. D., Pham V. H., Vu N. L., Pham D. M., Pham K. M., Doan T. N., et al. - The medicinal plants and animals in Vietnam, Science and Technics Publishing House, Ha Noi, 2006 (in Vietnamese).

Le D. D., Nguyen T. M. T., Ngo V. D., Bui T. T. L., Chu T. T. H., Jang H. J., Dang T. T., Tran T. H., Le H. T., Nguyen V. T., et al. - Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels, Carbohydr. Res. 484 (2019) 1-5. https://doi.org/10.1016/j.carres.2019.107778. DOI: https://doi.org/10.1016/j.carres.2019.107778 https://doi.org/10.1016/j.carres.2019.107778.">

Ye H., Wu W., Liu Z., Xie C., Tang M., Li S., Yang J., Tang H., Chen K., Long C., et al. - Bioactivity-guided isolation of anti-inflammatory flavonoids from the stems of Millettia dielsiana Harms, Fitoterapia. 95 (2014) 154-159. https://doi.org/10.1016/j.fitote. 2014.03.008. DOI: https://doi.org/10.1016/j.fitote.2014.03.008 https://doi.org/10.1016/j.fitote. 2014.03.008.">

Gong T., Wang H. Q. and Chen R. Y. - Isoflavones from vine stem of Millettia dielsiana, Zhongguo Zhong Yao Za Zhi. 32 (20) (2007) 2138-2140. PMID: 18306746.

Gong T., Wang D. X., Chen R. Y., Liu P. and Yu D. Q. - Novel Benzil and

Isoflavone Derivatives from Millettia dielsiana, Planta Med. 75 (3) (2009) 236-242. https://doi.org/10.1055/s-0028-1112203. DOI: https://doi.org/10.1055/s-0028-1112203 https://doi.org/10.1055/s-0028-1112203.">

Gong T., Zhang T., Wang D. X., Chen R. Y., Liu P. and Yu D. Q. - Two new isoflavone glycosides from the vine stem of Millettia dielsiana, J. Asian Nat. Prod. Res. 16 (2) (2013) 181-186. https://doi.org/10.1080/10286020.2013.860967. DOI: https://doi.org/10.1080/10286020.2013.860967 https://doi.org/10.1080/10286020.2013.860967.">

Kim H. P., Son K. H., Chang H. W. and Kang S. S. - Anti-inflammatory Plant Flavonoids and Cellular Action Mechanisms, J. Pharmacol. Sci. 96 (3) (2004) 229-245. https://doi.org/10.1254/jphs.crj04003x. DOI: https://doi.org/10.1254/jphs.CRJ04003X https://doi.org/10.1254/jphs.crj04003x.">

Ribeiro D., Freitas M., Tomé S. M., Silva A.M.S., Laufer S., Lima J.F.C.L. and Fernandes E. - Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood, Inflammation. 38 (2) (2014) 858-870. https://doi.org/10.1007/ s10753-014-9995-x. DOI: https://doi.org/10.1007/s10753-014-9995-x https://doi.org/10.1007/ s10753-014-9995-x.">

Marvin JS was used for drawing, displaying and characterizing chemical

structures, substructures and reactions, Marvin JS version 21.13.0, ChemAxon https://www.chemaxon.com. https://www.chemaxon.com.">

Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment, Release 2017; Dassault Systèmes: San Diego, CA. USA, 2017. https://www.3ds.com. https://www.3ds.com.">

Allouche A.R. - Gabedit-A graphical user interface for computational chemistry softwares, J. Comput. Chem. 32 (1) (2011) 174-182. https://doi.org/10.1002/jcc.21600. DOI: https://doi.org/10.1002/jcc.21600 https://doi.org/10.1002/jcc.21600.">

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S. and Olson A. J. - Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (16) (2009) 2785-2791. https://doi.org/ 10.1002/jcc.21256. DOI: https://doi.org/10.1002/jcc.21256 https://doi.org/ 10.1002/jcc.21256.">

Miciaccia M., Belviso B. D., Iaselli M., Cingolani G., Ferorelli S., Cappellari M., Polosa P. L., Perrone M. G., Caliandro R., Scilimati A. - Three‑dimensional structure of human cyclooxygenase (hCOX)‑1, Sci. Rep. 11 (1) (2021) 1-18. https://doi.org/10.1038/s41598-021-83438-z. DOI: https://doi.org/10.1038/s41598-021-83438-z https://doi.org/10.1038/s41598-021-83438-z.">

Orlando B. J. and Malkowski M. G. - Crystal structure of rofecoxib bound to

human cyclooxygenase-2, Acta Cryst. 72 (10) (2016) 772-776. https://dx.doi.org/ 10.1107/S2053230X16014230. DOI: https://doi.org/10.1107/S2053230X16014230 https://dx.doi.org/ 10.1107/S2053230X16014230.">

Yang C., Li P., Wang P. and Zhu B. T. - Mechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin, J. Mol. Graph. 107 (2021) 1-11. https://doi.org/10.1016/j.jmgm.2021.107941. DOI: https://doi.org/10.1016/j.jmgm.2021.107941 https://doi.org/10.1016/j.jmgm.2021.107941.">

Lipinski C. A. - Lead- and drug-like compounds: the rule-of-five revolution, Drug Discov. Today Technol. 1 (4) (2004) 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007. DOI: https://doi.org/10.1016/j.ddtec.2004.11.007 https://doi.org/10.1016/j.ddtec.2004.11.007.">

Benet L. Z., Hosey C. M., Ursu O., Oprea, T. I. - BDDCS, the Rule of 5 and Drugability, Adv. Drug Deliv. Rev. 101 (2016)89-98. https://doi.org/10.1016/j.addr.2016.05.007. DOI: https://doi.org/10.1016/j.addr.2016.05.007 https://doi.org/10.1016/j.addr.2016.05.007.">

Drug Likeness Tool - DruLito (2019), http://www.niper.gov.in/pi_dev_tools/ DruLiToWeb/DruLiTo_index.html. http://www.niper.gov.in/pi_dev_tools/ DruLiToWeb/DruLiTo_index.html.">

Trott O. and Olson A. J. - AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2) (2010) 455-161. https://doi.org/10.1002/jcc.21334. DOI: https://doi.org/10.1002/jcc.21334 https://doi.org/10.1002/jcc.21334.">

Duggan K. C., Walters M. J., Musee J., Harp J. M., Kiefer J. R., Oates J. A. and

Marnett L. J. - Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen, J. Biol. Chem. 285(45) (2010) 34950-34959. https://doi.org/10.1074/jbc.M110.162982. DOI: https://doi.org/10.1074/jbc.M110.162982 https://doi.org/10.1074/jbc.M110.162982.">

García Rodríguez L. A., Cattaruzzi C., Troncon M. G. and Agostinis L. - Risk of hospitalization for upper gastrointestinal tract bleeding associated with ketorolac, other nonsteroidal anti-inflammatory drugs, calcium antagonists, and other antihypertensive drugs, Arch. Intern. Med. 158 (1) (1998) 33-39. https://doi.org/10.1001/ archin7te.158.1.33. DOI: https://doi.org/10.1001/archinte.158.1.33 https://doi.org/10.1001/ archin7te.158.1.33.">

Pran K. D., Raghu P. M., Bilal A. J. and Mohamed J. S. - Molecular Basis of Binding Interactions of NSAIDs and Computer-Aided Drug Design Approaches in the Pursuit of the Development of Cyclooxygenase-2 (COX-2) Selective Inhibitors, Nonsteroidal Anti-Inflammatory Drugs, Intech Open, London, 2017, 101-121.

Perrone M. G., Scilimati A., Simone L. and Vitale P. - Selective COX-1 Inhibition: A Therapeutic Target to be Reconsidered, Curr. Med. Chem. 17 (32) (2010) 3769-3805. https://doi:10.2174/092986710793205408. DOI: https://doi.org/10.2174/092986710793205408

Wei Z., Yang Y., Xie C., Li C., Wang G., Ma L., Xiang M., Sun J., Wei Y., and Chen L. - Synthesis and Biological Evaluation of Pyranoisoflavone Derivatives as Anti-Inflammatory Agents, Fitoterapia. 97 (2014) 172-183. https://doi:10.1016/j.fitote. 2014.06.002. DOI: https://doi.org/10.1016/j.fitote.2014.06.002




How to Cite

Nguyen Xuan Ha, Vu Thi Thu Le, Do Tien Lam, Pham Minh Quan, and Vu Thanh Dat, “Evaluation of anti-inflammatory compounds isolated from Millettia dielsiana Harms ex Diels by molecular docking method”, Vietnam J. Sci. Technol., vol. 60, no. 5, pp. 785–793, Nov. 2022.



Natural Products

Most read articles by the same author(s)