Improvement of SERS signal measured by portable Raman instrument using random sampling technique

Nguyen Van Tien, Nguyen Trong Nghia, Nghiem Thi Ha Lien, Vu Duong, Do Quang Hoa, Duong Chi Dung, Phan Nguyen Nhue, Nguyen Minh Hue
Author affiliations

Authors

  • Nguyen Van Tien Department of Physics, Graduate University of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam https://orcid.org/0000-0002-2432-9527
  • Nguyen Trong Nghia Center for Quantum and Electronics, Institute of Physics, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nghiem Thi Ha Lien Center for Quantum and Electronics, Institute of Physics, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Vu Duong Center for Quantum and Electronics, Institute of Physics, 18 Hoang Quoc Viet, Ha Noi, Viet Nam https://orcid.org/0000-0001-9813-723X
  • Do Quang Hoa Center for Quantum and Electronics, Institute of Physics, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Duong Chi Dung Department of Optical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Phan Nguyen Nhue Department of Optical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Minh Hue Department of Physics, Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam https://orcid.org/0000-0002-6059-6964

DOI:

https://doi.org/10.15625/2525-2518/16384

Keywords:

β-galactosidase, hemolytic activity, Lactobacillus casei, probiotic

Abstract

In recent years, portable Raman spectrometers and commercialized surface-enhanced Raman scattering (SERS) substrates have become increasingly popular. They have turned out to be great tools for both substance detection, identification, and analysis on-site. This work addresses the technique to collect proper Raman spectra using SERS substrates and portable Raman spectrometers. We propose a random sampling technique that gives representative and high-quality spectra with high intensity and good resolution. This technique was tested on a home-built portable Raman spectrometer and SERS substrates based on metal film over nano-sphere (MFON) structure. Experimental results showed that peaks of Raman spectrum collected using random sampling technique are significantly narrower than those of spectra measured in conventional one and prevent samples and SERS substrates from photoinduced degradation. Potentially, this method can promote quantitative SERS and chemical trace analysis using portable Raman spectrometers.

Downloads

Download data is not yet available.

References

Diem M. - Modern Vibrational Spectroscopy and Micro-Spectroscopy, John Wiley & Sons Ltd publisher, Chichester, 2015 (in English). DOI: https://doi.org/10.1002/9781118824924

Hargreaves M. D. - Handheld Raman Spectrometers and Their Applications, Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 2014, pp. 1-16. https://onlinelibrary.wiley.com/doi/10.1002/9780470027318.a9378 DOI: https://doi.org/10.1002/9780470027318.a9378

Padlo T. and Bakeev K. - The Versatility of Portable Raman in Process Development, Spectroscopy 31 (2016) 16-22. https://www.spectroscopyonline.com/view/versatility-portable-raman-process-development.

Crocombe R. A. - Portable Spectroscopy, Appl. Spectrosc 72 (12) (2018) 1701-1751. https://doi.org/10.1177/0003702818809719. DOI: https://doi.org/10.1177/0003702818809719

Mukhopadhyay R. - Raman flexes its muscles, Anal. Chem.79 (9) (2007) 3265-3270. https://doi.org/10.1021/ac0719094. DOI: https://doi.org/10.1021/ac0719094

Li Y., Shen B., Li S., Zhao Y., Qu J., and Liu L. - Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences, Adv. Biol. 5 (1) (2021) 2000184. https://doi.org/10.1002/adbi.202000184. DOI: https://doi.org/10.1002/adbi.202000184

Li S., Li Y., Yi R., Liu L., and Qu J. - Coherent Anti-Stokes Raman Scattering Microscopy and Its Applications, Front. Phys. 8 (2020) 598420. https://doi.org/10.3389/fphy.2020.598420. DOI: https://doi.org/10.3389/fphy.2020.598420

Langer J., Dorleta Jimenez de Aberasturi, Aizpurua J., Alvarez-Puebla R. A., Auguié B., Baumberg J. J., Bazan G. C., Bell S. E. J., Boisen A., Brolo A. G., et al. - Present and future of surface-enhanced Raman scattering, ACS Nano.14 (1) (2020) 28-117. https://doi.org/10.1021/acsnano.9b04224. DOI: https://doi.org/10.1021/acsnano.9b04224

Almehmadi L. M., Curley S. M., Tokranova N. A., Tenenbaum S. A., and Lednev I. K. - Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection, Sci. Rep. 9 (2019) 12356. https://doi.org/10.1038/s41598-019-48650-y. DOI: https://doi.org/10.1038/s41598-019-48650-y

Yu Y., Xiao T., Wu Y., Li W., Zeng Q. G., Long L., and Li Z. Y. - Roadmap for single-molecule surface-enhanced Raman spectroscopy, Adv. Photonics 2 (1) (2020) 014002.https://doi.org/10.1117/1.AP.2.1.014002. DOI: https://doi.org/10.1117/1.AP.2.1.014002

Marks H., Schechinger M., Garza J., Locke A., and Coté G. - Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care, Nanophotonics 6 (4) (2017) 681-701. https://doi.org/10.1515/nanoph-2016-0180. DOI: https://doi.org/10.1515/nanoph-2016-0180

Avram L., Iancu S. D., Stefancu A., Moisoiu V., Colnita A., Marconi D., Donca V., Buzdugan E., Craciun R., Leopold N., et al. - SERS-Based Liquid Biopsy of Gastrointestinal Tumors Using a Portable Raman Device Operating in a Clinical Environment, J. Clin. Med. 9 (1) (2020) 212. https://doi.org/10.3390/jcm9010212. DOI: https://doi.org/10.3390/jcm9010212

Zhua W., Wena B. Y., Jie L. J., Tian X. D., Yang Z. L., Radjenovic P. M., Luo S.Y., Tian Z. Q., LiJ. F. - Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer, Biosens Bioelectron 154 (2020) 112067. https://doi.org/10.1016/j.bios.2020.112067. DOI: https://doi.org/10.1016/j.bios.2020.112067

Sourdaine M., Guenther D., Dowgiallo A. M., C. H., Mattley Y., Guckian A. and LischtschenkoO. - Protecting the food supply chain: Utilizing SERS and portable Raman spectroscopy, Tech. Mess 82 (12) (2015) 625-632. https://doi.org/10.1515/teme-2015-0046. DOI: https://doi.org/10.1515/teme-2015-0046

Pilot R. - SERS detection of food contaminants by means of portable Raman instruments, J. Raman Spectrosc 49 (6) (2018) 954-981. https://doi.org/10.1002/jrs.5400. DOI: https://doi.org/10.1002/jrs.5400

Suh J. S., Jeong D. H., and Lee M. S. - Effect of inhomogeneous broadening on the surface photochemistry of phthalazine, J. Raman Spectrosc 30 (7) (1999) 595-598. https://doi.org/10.1002/(SICI)1097-4555(199907)30:7<595::AID-JRS425>3.0.CO;2-7. DOI: https://doi.org/10.1002/(SICI)1097-4555(199907)30:7<595::AID-JRS425>3.0.CO;2-7

Artur C., Le Ru E. C., and Etchegoin P. G. - Temperature dependence of the homogeneous broadening of resonant Raman peaks measured by single-molecule surface-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 2 (23) (2011) 3002-3005. https://doi.org/10.1021/jz2013787. DOI: https://doi.org/10.1021/jz2013787

Mahajan S., Cole R. M., Speed J. D., Pelfrey S. H., Russell A. E., Bartlett P. N., Barnett S. M., and BaumbergJ. J. - Understanding the surface-enhanced Raman spectroscopy ‘ background, J. Phys. Chem. C 114 (16) (2010) 7242-7250.

https://doi.org/10.1021/jp907197b. sed: 29-Jul-2021). DOI: https://doi.org/10.1021/jp907197b

Nguyen T. V., Pham L. T., Bui K. X., Nghiem L. H. T., Nguyen N. T., Vu D., H. Q. Do, L. D. Vu and H. M. Nguyen. - Size determination of polystyrene sub-microspheres using transmission spectroscopy, Appl. Sci. 10 (15) (2020) 5232.

https://doi.org/10.3390/app10155232. DOI: https://doi.org/10.3390/app10155232

Greeneltch N. G., Blaber M. G., Henry A. I., Schatz G. C., and Van Duyne R. P. - Immobilized nanorod assemblies: Fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates, Anal. Chem. 85 (4) (2013) 2297-2303. https://doi.org/10.1021/ac303269w. DOI: https://doi.org/10.1021/ac303269w

Nguyen T. V., Pham L. T., Khuyen B. X., Duong D. C., Nghiem L. H. T., Nguyen N. T., Vu D., Hoa D. Q., Lam V. D. and NguyenH. M. - Effects of metallic under-layer on SERS performance of MFON meta-surface, J. Phys. D: Appl. Phys. 55 (2021) 025101. https://doi.org/10.1088/1361-6463/ac292d. DOI: https://doi.org/10.1088/1361-6463/ac292d

Mahadevan-Jansen A. and Lieber C. A. - Automated Method for Subtraction of Fluorescence from Biological Raman Spectra, Appl. Spectrosc 57 (11) (2003) 1363-1367. https://doi.org/10.1366/000370203322554518. DOI: https://doi.org/10.1366/000370203322554518

Farcau C. - Metal-coated microsphere monolayers as surface plasmon resonance sensors operating in both transmission and reflection modes, Sci. Rep. 9 (1) (2019) 3683. https://doi.org/10.1038/s41598-019-40261-x. DOI: https://doi.org/10.1038/s41598-019-40261-x

Watanabe H., Hayazawa N., Inouye Y., and Kawata S. - DFT vibrational calculations of Rhodamine 6G adsorbed on silver: Analysis of tip-enhanced Raman spectroscopy, J. Phys. Chem. B. 109 (11) (2005) 5012-5020. https://doi.org/10.1021/jp045771u DOI: https://doi.org/10.1021/jp045771u

https://spectrabase.com/spectrum/BoTjT1jcUKz. (Accessed: 01-Aug-2021).

Goodacre R., Graham D., and Faulds K. - Recent developments in quantitative SERS: Moving towards absolute quantification, TrAC - Trends Anal. Chem. 102 (2018) 359-368. https://doi.org/10.1016/j.trac.2018.03.005. DOI: https://doi.org/10.1016/j.trac.2018.03.005

Zhao F., Wang W., Zhong H., Yang F., Fu W., Ling Zhengjun ZhangY. - Robust quantitative SERS analysis with Relative Raman scattering intensities, Talanta 221 (2021) 121465. https://doi.org/10.1016/j.talanta.2020.121465. DOI: https://doi.org/10.1016/j.talanta.2020.121465

Bradley M. - Curve Fitting in Raman and IR Spectroscopy: Basic Theory of Line Shapes and Applications, Thermo Fisher Scientific application note, 2007.

Downloads

Published

23-12-2022

How to Cite

[1]
N. Van Tien, “Improvement of SERS signal measured by portable Raman instrument using random sampling technique”, Vietnam J. Sci. Technol., vol. 60, no. 2, pp. 237–244, Dec. 2022.

Issue

Section

Materials

Most read articles by the same author(s)