Improvement of SERS signal measured by portable Raman instrument using random sampling technique
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16384Keywords:
β-galactosidase, hemolytic activity, Lactobacillus casei, probioticAbstract
In recent years, portable Raman spectrometers and commercialized surface-enhanced Raman scattering (SERS) substrates have become increasingly popular. They have turned out to be great tools for both substance detection, identification, and analysis on-site. This work addresses the technique to collect proper Raman spectra using SERS substrates and portable Raman spectrometers. We propose a random sampling technique that gives representative and high-quality spectra with high intensity and good resolution. This technique was tested on a home-built portable Raman spectrometer and SERS substrates based on metal film over nano-sphere (MFON) structure. Experimental results showed that peaks of Raman spectrum collected using random sampling technique are significantly narrower than those of spectra measured in conventional one and prevent samples and SERS substrates from photoinduced degradation. Potentially, this method can promote quantitative SERS and chemical trace analysis using portable Raman spectrometers.
Downloads
References
Diem M. - Modern Vibrational Spectroscopy and Micro-Spectroscopy, John Wiley & Sons Ltd publisher, Chichester, 2015 (in English). DOI: https://doi.org/10.1002/9781118824924
Hargreaves M. D. - Handheld Raman Spectrometers and Their Applications, Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 2014, pp. 1-16. https://onlinelibrary.wiley.com/doi/10.1002/9780470027318.a9378 DOI: https://doi.org/10.1002/9780470027318.a9378
Padlo T. and Bakeev K. - The Versatility of Portable Raman in Process Development, Spectroscopy 31 (2016) 16-22. https://www.spectroscopyonline.com/view/versatility-portable-raman-process-development.
Crocombe R. A. - Portable Spectroscopy, Appl. Spectrosc 72 (12) (2018) 1701-1751. https://doi.org/10.1177/0003702818809719. DOI: https://doi.org/10.1177/0003702818809719
Mukhopadhyay R. - Raman flexes its muscles, Anal. Chem.79 (9) (2007) 3265-3270. https://doi.org/10.1021/ac0719094. DOI: https://doi.org/10.1021/ac0719094
Li Y., Shen B., Li S., Zhao Y., Qu J., and Liu L. - Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences, Adv. Biol. 5 (1) (2021) 2000184. https://doi.org/10.1002/adbi.202000184. DOI: https://doi.org/10.1002/adbi.202000184
Li S., Li Y., Yi R., Liu L., and Qu J. - Coherent Anti-Stokes Raman Scattering Microscopy and Its Applications, Front. Phys. 8 (2020) 598420. https://doi.org/10.3389/fphy.2020.598420. DOI: https://doi.org/10.3389/fphy.2020.598420
Langer J., Dorleta Jimenez de Aberasturi, Aizpurua J., Alvarez-Puebla R. A., Auguié B., Baumberg J. J., Bazan G. C., Bell S. E. J., Boisen A., Brolo A. G., et al. - Present and future of surface-enhanced Raman scattering, ACS Nano.14 (1) (2020) 28-117. https://doi.org/10.1021/acsnano.9b04224. DOI: https://doi.org/10.1021/acsnano.9b04224
Almehmadi L. M., Curley S. M., Tokranova N. A., Tenenbaum S. A., and Lednev I. K. - Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection, Sci. Rep. 9 (2019) 12356. https://doi.org/10.1038/s41598-019-48650-y. DOI: https://doi.org/10.1038/s41598-019-48650-y
Yu Y., Xiao T., Wu Y., Li W., Zeng Q. G., Long L., and Li Z. Y. - Roadmap for single-molecule surface-enhanced Raman spectroscopy, Adv. Photonics 2 (1) (2020) 014002.https://doi.org/10.1117/1.AP.2.1.014002. DOI: https://doi.org/10.1117/1.AP.2.1.014002
Marks H., Schechinger M., Garza J., Locke A., and Coté G. - Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care, Nanophotonics 6 (4) (2017) 681-701. https://doi.org/10.1515/nanoph-2016-0180. DOI: https://doi.org/10.1515/nanoph-2016-0180
Avram L., Iancu S. D., Stefancu A., Moisoiu V., Colnita A., Marconi D., Donca V., Buzdugan E., Craciun R., Leopold N., et al. - SERS-Based Liquid Biopsy of Gastrointestinal Tumors Using a Portable Raman Device Operating in a Clinical Environment, J. Clin. Med. 9 (1) (2020) 212. https://doi.org/10.3390/jcm9010212. DOI: https://doi.org/10.3390/jcm9010212
Zhua W., Wena B. Y., Jie L. J., Tian X. D., Yang Z. L., Radjenovic P. M., Luo S.Y., Tian Z. Q., LiJ. F. - Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer, Biosens Bioelectron 154 (2020) 112067. https://doi.org/10.1016/j.bios.2020.112067. DOI: https://doi.org/10.1016/j.bios.2020.112067
Sourdaine M., Guenther D., Dowgiallo A. M., C. H., Mattley Y., Guckian A. and LischtschenkoO. - Protecting the food supply chain: Utilizing SERS and portable Raman spectroscopy, Tech. Mess 82 (12) (2015) 625-632. https://doi.org/10.1515/teme-2015-0046. DOI: https://doi.org/10.1515/teme-2015-0046
Pilot R. - SERS detection of food contaminants by means of portable Raman instruments, J. Raman Spectrosc 49 (6) (2018) 954-981. https://doi.org/10.1002/jrs.5400. DOI: https://doi.org/10.1002/jrs.5400
Suh J. S., Jeong D. H., and Lee M. S. - Effect of inhomogeneous broadening on the surface photochemistry of phthalazine, J. Raman Spectrosc 30 (7) (1999) 595-598. https://doi.org/10.1002/(SICI)1097-4555(199907)30:7<595::AID-JRS425>3.0.CO;2-7. DOI: https://doi.org/10.1002/(SICI)1097-4555(199907)30:7<595::AID-JRS425>3.0.CO;2-7
Artur C., Le Ru E. C., and Etchegoin P. G. - Temperature dependence of the homogeneous broadening of resonant Raman peaks measured by single-molecule surface-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 2 (23) (2011) 3002-3005. https://doi.org/10.1021/jz2013787. DOI: https://doi.org/10.1021/jz2013787
Mahajan S., Cole R. M., Speed J. D., Pelfrey S. H., Russell A. E., Bartlett P. N., Barnett S. M., and BaumbergJ. J. - Understanding the surface-enhanced Raman spectroscopy ‘ background, J. Phys. Chem. C 114 (16) (2010) 7242-7250.
https://doi.org/10.1021/jp907197b. sed: 29-Jul-2021). DOI: https://doi.org/10.1021/jp907197b
Nguyen T. V., Pham L. T., Bui K. X., Nghiem L. H. T., Nguyen N. T., Vu D., H. Q. Do, L. D. Vu and H. M. Nguyen. - Size determination of polystyrene sub-microspheres using transmission spectroscopy, Appl. Sci. 10 (15) (2020) 5232.
https://doi.org/10.3390/app10155232. DOI: https://doi.org/10.3390/app10155232
Greeneltch N. G., Blaber M. G., Henry A. I., Schatz G. C., and Van Duyne R. P. - Immobilized nanorod assemblies: Fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates, Anal. Chem. 85 (4) (2013) 2297-2303. https://doi.org/10.1021/ac303269w. DOI: https://doi.org/10.1021/ac303269w
Nguyen T. V., Pham L. T., Khuyen B. X., Duong D. C., Nghiem L. H. T., Nguyen N. T., Vu D., Hoa D. Q., Lam V. D. and NguyenH. M. - Effects of metallic under-layer on SERS performance of MFON meta-surface, J. Phys. D: Appl. Phys. 55 (2021) 025101. https://doi.org/10.1088/1361-6463/ac292d. DOI: https://doi.org/10.1088/1361-6463/ac292d
Mahadevan-Jansen A. and Lieber C. A. - Automated Method for Subtraction of Fluorescence from Biological Raman Spectra, Appl. Spectrosc 57 (11) (2003) 1363-1367. https://doi.org/10.1366/000370203322554518. DOI: https://doi.org/10.1366/000370203322554518
Farcau C. - Metal-coated microsphere monolayers as surface plasmon resonance sensors operating in both transmission and reflection modes, Sci. Rep. 9 (1) (2019) 3683. https://doi.org/10.1038/s41598-019-40261-x. DOI: https://doi.org/10.1038/s41598-019-40261-x
Watanabe H., Hayazawa N., Inouye Y., and Kawata S. - DFT vibrational calculations of Rhodamine 6G adsorbed on silver: Analysis of tip-enhanced Raman spectroscopy, J. Phys. Chem. B. 109 (11) (2005) 5012-5020. https://doi.org/10.1021/jp045771u DOI: https://doi.org/10.1021/jp045771u
https://spectrabase.com/spectrum/BoTjT1jcUKz. (Accessed: 01-Aug-2021).
Goodacre R., Graham D., and Faulds K. - Recent developments in quantitative SERS: Moving towards absolute quantification, TrAC - Trends Anal. Chem. 102 (2018) 359-368. https://doi.org/10.1016/j.trac.2018.03.005. DOI: https://doi.org/10.1016/j.trac.2018.03.005
Zhao F., Wang W., Zhong H., Yang F., Fu W., Ling Zhengjun ZhangY. - Robust quantitative SERS analysis with Relative Raman scattering intensities, Talanta 221 (2021) 121465. https://doi.org/10.1016/j.talanta.2020.121465. DOI: https://doi.org/10.1016/j.talanta.2020.121465
Bradley M. - Curve Fitting in Raman and IR Spectroscopy: Basic Theory of Line Shapes and Applications, Thermo Fisher Scientific application note, 2007.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.