Studying the chromatic responses of AuNPs embedment into the opal photonic crystals using the alexa 594 fluorescent dye

Pham Hong Phong, Vu Thi Thu Ha
Author affiliations

Authors

  • Pham Hong Phong Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Vu Thi Thu Ha Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16349

Keywords:

photonic crystals, PEGDA/SiO2, fluorescent dye

Abstract

In this study, the chromatic responses of opal photonic crystals (PhCs) based on SiO2 microspheres fabricated by self-assembly followed by coating polyethylene glycol diacrylate (PEGDA/SiO2) were investigated. In the presence of Alexa@594 fluorescent dye, the fluorescent intensity of PEGDA/SiO2 and PEGDA/SiO2-AuNPs was enhanced 2.2-fold and 3.0-fold, respectively, compared with that of the SiO2 sample. This was elucidated by investigating the reflection spectra. The obtained stopband clearly showed a red-shift of the PEGDA/SiO2 about 70 nm (at 623 nm) which could overlap the emission wavelength of the fluorescent dye (617 nm). Plasmon resonance was also achieved when this chromatic response became more significant with the embedment of AuNPs into PEGDA/SiO2. These obtained results indicated that the material prepared by self-assembly of microsphere SiO2 coated with PEGDA showed a chromatic response of a PhC. Specially, with the presence of AuNPs in PEGDA, this behavior of the PhC became more significant. A such material can be helpful and promissing for further modification to apply to the field of chromatically optical sensing.

Downloads

Download data is not yet available.

References

Fenzl Ch, Hirsch T., Wolfbeis O. S. - Photonic crystals for chemical sensing and biosensing, Angew.

Chem. Int. Ed. 53 (2014) 3318-3335. https://doi.org/10.1002/anie.201307828.

Campbell M., Sharp D. N., Harrison M. T., Denning R. G., Turberfield A. T - Fabrication of photonic

crystals for the visible spectrum by holographic lithography, Nature. 404 (2000) 53-56.

https://doi.org/10.1038/35003523.

Liang, G. Q., Zhu, X. L., Xu, Y. A., Li J., and Yang, S. - “Holographic design and fabrication of diamond

photonic crystals via dual-beam quadruple exposure”. Adv. Mater. 22 (2010) 4524-4529.

https://doi.org/10.1002/adma.201001785.

Shir D., Nelson E. C., Chen Y. C., Brzezinski A., Liao H., Braun P. V., Wiltzius P., Bogart K. H. A. and

Rogers J. A. - Three dimensional silicon photonic crystals fabricated by two photon phase mask

lithography, Appl. Phys. Let. 94 (2009) 011101. https://doi.org/10.1063/1.3036955.

von Freymann G., Kitaev V., Lotsch B.V., Ozin G.A. - Bottom-upassembly of photonic crystals, Chem.

Soc. Rev. 42 (2023) 2528-2554. https://doi.org/10.1039/C2CS35309A.

Galisteo-López J. F., Ibisate M., Sapienza R., Froufe-Pérez L.S., Blanco A., López C. - Self-assembled

photonic structures, Adv. Mat. 23(1) (2011) 30-69. https://doi.org/10.1002/adma.201000356.

Liu G., Zhou L., Fan Q, Chain L., Shao L. - The vertical deposition self-assembly process and the

formation mechanism of poly(styrene-co-methacrylic acid) photonic crystals on polyester fabrics, J.

Mat. Sci. 51 (2017) 2859-2868. https://doi.org/10.1007/s10853-015-9594-8.

Cushing S. K., Hornak L. A., Lankford J., Liu Y., Wu N. - Origin of local surface plasmon resonances in

thin silver film over nanosphere patterns. Appl. Phys. A. 103 (2011) 955-958.

https://doi.org/10.1007/s00339-011-6393-1.

Rout D., Vijaya R. - Plasmonic resonance-induced effects on stopband and emission characteristics

of dye-doped opals, Plasmonics. 10 (2015) 713-719. https://doi.org/10.1007/s00339-011-6393-1.

Morandi V., Marabelli F., Amendola V., Meneghetti M., Comoretto D. - Light localization effect on the

optical properties of opal doped with gold nanoparticles. J. Phys. Chem. C. 112 (2008) 6293-6298.

https://doi.org/10.1021/jp711040r.

Lonergan A., Murphy B., Dwyer C. O’ - Metallo-dielectric photonic crystals and bandgap blue-shift.

Phys. Optics, in press (2021). https://arxiv.org/abs/2105.06280.

Ding B, Bardosova M, Pemble ME, Korovin AV, Peschel U, Romanov SG - Broadband omnidirectional

diversion of light in hybrid plasmonic-photonic heterocrystals. Adv. Fun. Mater. 21 (2011) 4182–

https://doi.org/10.1002/adfm.201100695.

Kim S., Mitropoulos A.N., Spitzberg J. D., Kaplan D. L., Omenetto F. G. - Silk protein hybrid photonic-

plasmonic crystal. Opt. Exp. 21(7) (2013) 8897-8903. https://doi.org/10.1364/OE.21.008897.

Amrehn S., Wu X., Schumacher C., Wagner T. - Photonic crystal-based fluid sensors: Toward

practical application. Phys. Status Solidi A. 212 (2015) 1266-1273.

https://doi.org/10.1002/pssa.201431875.

Stöber W., Fink A., Bohn E. - Controlled growth of monodisperse silica spheres in the micron size

range, Journal of Colloid and Interface Science. 26 (1) (1968) 62–69. https://doi.org/10.1016/0021-

(68)90272-5.

González-Viñas, W. & Mancini, H.L - An Introduction to Materials Science. Princeton University Press

(2004).

Dauthal P., Mukhopadhyay M. - In-vitro free radical scavenging activity of biosynthesized gold and

silver nanoparticles using Prums Armeniaca (Apricot) fruit extract. J. Nanoparticle Res. 15(1) (2013)

-11. http://dx.doi.org/10.1007/s11051-012-1366-7.

Newbury D. E. - Mistakes encountered during automatic peak identification of minor and trace

constituents in electron-excited energy dispersive X-ray microanalysis. Scanning. 31 (2009) 91-101.

https://doi.org/10.1002/sca.20151.

Chiappini L., Tran L.T.N., García P. M. T., Zur L., Lukowiak A., Ferrari M., Righini G. C. - Photonic

crystal stimuli-responsive chromatic sensors: a short review. Micromachines. 11 (2020) 290-315.

https://doi.org/10.3390/mi11030290.

Yablonovitch E. - Photonic band-gap structure. J. Opt. Soc. Am. B. 10 (1993) 283-295.

https://doi.org/10.1364/JOSAB.10.000283.

Kim J. -K., Joo S.-H., Song J.-K. - Complementarity between fluorescence and reflection in

photoluminescent choleteric liquid crystal devices, Opt. Express. 21(5) (2013) 6243-6248.

https://doi.org/10.1364/OE.21.006243.

Haron M. H., Majlis R. Y., Zain A. R. M. - Increasing the quality factor (Q) of 1D photonic crystal cavity

with an end loop-mirror, Photonics. 8 (2021) 99-110. https://doi.org/10.3390/photonics8040099.

Zhang Y. Q., Wang J. X., Ji Z. Y., Hu W. P., Jiang L., Song Y. L., Zhu D. B. - Solid-state fluorescence

enhancement of organic dyes by photonic crystals. J. Mater. Chem. 17 (2007) 90-94.

https://doi.org/10.1039/B612905F.

Chen J. I. L., Freymann G. V., Choi S. Y., Kitaev V., Ozin G. A. - Slow photons in the fast lane in in

chemistry. J. Mater. Chem. 18 (2008) 369-373. https://doi.org/10.1039/B708474A.

Eftekhari E., Cole I. S., Li Q. - Theeffect of fluorophore incorporation on fluorescence enhancement

in colloidal photonic crystals. Phys. Chem. Chem. Phys. 16 (2016) 1743-1749.

https://doi.org/10.1039/C5CP06489A.

Downloads

Published

23-03-2022

How to Cite

[1]
P. H. Phong and V. T. T. Ha, “Studying the chromatic responses of AuNPs embedment into the opal photonic crystals using the alexa 594 fluorescent dye”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 1014–1022, Mar. 2022.

Issue

Section

Materials