Understanding the adsorptive interactions of carbon dioxide with metal-organic framework (IRMOF-1) using a theoretical approach

Ha Thi Thao, Phung Thi Lan, Nguyen Dinh Thoai, Tran Thanh Hue, Nguyen Ngoc Ha, Nguyen Thi Thu Ha
Author affiliations

Authors

  • Ha Thi Thao National University of Education, 136 Xuan Thuy Str., Cau Giay, Ha Noi, Viet Nam
  • Phung Thi Lan National University of Education, 136 Xuan Thuy Str., Cau Giay, Ha Noi, Viet Nam
  • Nguyen Dinh Thoai National University of Education, 136 Xuan Thuy Str., Cau Giay, Ha Noi, Viet Nam
  • Tran Thanh Hue National University of Education, 136 Xuan Thuy Str., Cau Giay, Ha Noi, Viet Nam
  • Nguyen Ngoc Ha National University of Education, 136 Xuan Thuy Str., Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Thu Ha National University of Education, 136 Xuan Thuy Str., Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16273

Keywords:

DFTB, molecular dynamics, electrocatalytic reduction CO2, MOFs, adsorption

Abstract

Density Functionalbased Tight-binding method with dispersion corrections and Molecular Dynamics (MD) simulations were performed to study the carbon dioxide (CO2) adsorption process on a metal-organic framework (IRMOF-1). The adsorption centers, adsorption energy, adsorption capacity, diffusion coefficient, and the effect of temperature on the adsorption process have been thoroughly examined and elucidated.The calculated results reveal that the favorable CO2adsorption site on IRMOF-1 is the position where the CO2molecule is located in the cavity formed by themetalclusterand oxygenatoms of the three –COO groups of the organicligand. The CO2moleculeswereinstantly adsorbed on the IRMOF-1structure as "anchors" to hold the next molecules in place. The Monte Carlo simulation results demonstrate that when the concentration of CO2molecules is low, they preferentially adsorb onto the surface of IRMOF-1. As the number of CO2molecules increases, they will gradually occupy the free space inside the crystal. The MD simulations with constant volume and temperature have shown that up to 350K, CO2was still dynamically adsorbed on IRMOF-1, without being desorbed.The calculated diffusion coefficients implythat CO2would diffuse into IRMOF-1 slower thanmethane, but quicker than oxygen and nitrogen. Therefore, it is feasible to separate CO2from itsmixturewith oxygen and nitrogen using IRMOF-1.

Downloads

Download data is not yet available.

References

Boot-Handford M. E., Abanades J. C., Anthony E. J., Blunt M. J., Brandani S., Mac Dowell N., Fernandez J. R., Ferrari M. C., Gross R., Hallett J. P., et al. - Carbon capture and storage update, Energy Environ. Sci. 7 (1) (2014) 130-189. https://doi.org/10.1039/c3ee42350f.

Raza A., Gholami R., Rezaee R., Rasouli V. and Rabiei M. - Significant aspects of carbon capture and storage – A review, Petroleum. 5 (4) (2019) 335-340. https://doi.org/10.1016/j.petlm.2018.12.007.

Babamohammadi S., Shamiri A. and Aroua M. K. - A review of CO2 capture by absorption in ionic liquid-based solvents, Rev. Chem. Eng. 31 (4) (2015). https://doi.org/10.1515/revce-2014-0032.

Zagho M. M., Hassan M. K., Khraisheh M., Al-Maadeed M. A. A. and Nazarenko S. - A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs), CEJ Advances. 6 (2021) 100091. https://doi.org/https://doi.org/10.1016/j.ceja.2021.100091.

Sai Bhargava Reddy M., Ponnamma D., Sadasivuni K. K., Kumar B. and Abdullah A. M. - Carbon dioxide adsorption based on porous materials, RSC Advances. 11 (21) (2021) 12658-12681. https://doi.org/10.1039/D0RA10902A.

Mukhtar A., Saqib S., Mellon N. B., Rafiq S., Babar M., Ullah S., Muhammad N., Khan A. L., Ayoub M., Ibrahim M., et al. - A review on CO2 capture via nitrogen-doped porous polymers and catalytic conversion as a feedstock for fuels, J. Clean. Prod. 277 (2020) 123999. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123999.

Zeng Y., Zou R. and Zhao Y. - Covalent Organic Frameworks for CO2 Capture, Adv. Mater. 28 (2016) https://doi.org/10.1002/adma.201505004.

Lin Y., Kong C., Zhang Q. and Chen L. - Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage, Adv. Energy Mater. 7 (4) (2017) 1601296. https://doi.org/https://doi.org/10.1002/aenm.201601296.

Kong L., Zou R., Bi W., Zhong R., Mu W., Liu J., Han R. P. S. and Zou R. - Selective adsorption of CO2/CH4 and CO2/N2 within a charged metal–organic framework, J. Mater. Chem. A. 2 (42) (2014) 17771-17778. https://doi.org/10.1039/C4TA01993H.

Qazvini O. T., Babarao R. and Telfer S. G. - Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework, Nat. Commun. 12 (1) (2021) 197. https://doi.org/10.1038/s41467-020-20489-2.

Liu R.-S., Shi X.-D., Wang C.-T., Gao Y.-Z., Xu S., Hao G.-P., Chen S. and Lu A.-H. - Advances in Post-Combustion CO2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice, ChemSusChem. 14 (6) (2021) 1428-1471. https://doi.org/https://doi.org/10.1002/cssc.202002677.

Elhenawy S. E. M., Khraisheh M., AlMomani F. and Walker G. - Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2, Catalysts. 10 (11) (2020) https://doi.org/10.3390/catal10111293.

Poloni R., Smit B. and Neaton J. B. - CO2 capture by metal-organic frameworks with van der Waals density functionals, J. Phys. Chem. A. 116 (20) (2012) 4957-64. https://doi.org/10.1021/jp302190v.

Grajciar L., Wiersum A. D., Llewellyn P. L., Chang J. S. and Nachtigall P. - Understanding CO2 Adsorption in CuBTC MOF: Comparing Combined DFT–ab Initio Calculations with Microcalorimetry Experiments, J. Phys. Chem. C. 115 (36) (2011) 17925-17933. https://doi.org/10.1021/jp206002d.

Xu K., Moeljadi A. M. P., Mai B. K. and Hirao H. - How Does CO2 React with Styrene Oxide in Co-MOF-74 and Mg-MOF-74? Catalytic Mechanisms Proposed by QM/MM Calculations, J. Phys. Chem. C. 122 (1) (2017) 503-514. https://doi.org/10.1021/acs.jpcc.7b09790.

Moeljadi A. M. P., Schmid R. and Hirao H. - Dioxygen binding to Fe-MOF-74: microscopic insights from periodic QM/MM calculations, Can. J. Chem. 94 (12) (2016) 1144-1150. https://doi.org/10.1139/cjc-2016-0284.

Haldoupis E., Borycz J., Shi H., Vogiatzis K. D., Bai P., Queen W. L., Gagliardi L. and Siepmann J. I. - Ab Initio Derived Force Fields for Predicting CO2 Adsorption and Accessibility of Metal Sites in the Metal–Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu), J. Phys. Chem. C. 119 (28) (2015) 16058-16071. https://doi.org/10.1021/acs.jpcc.5b03700.

Kuhne T. D., Iannuzzi M., Del Ben M., Rybkin V. V., Seewald P., Stein F., Laino T., Khaliullin R. Z., Schutt O., Schiffmann F., et al. - CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations, J. Chem. Phys. 152 (19) (2020) 194103. https://doi.org/10.1063/5.0007045.

https://www.dftb.org/

Grimme S., Antony J., Ehrlich S. and Krieg H. - A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (15) (2010) 154104. https://doi.org/10.1063/1.3382344.

Lukose, B., Supronowicz, B., St. Petkov, P., Frenzel, J., Kuc, A.B., Seifert, G., Vayssilov, G.N. and Heine, T. - Structural properties of metal-organic frameworks within the density-functional based tight-binding method, Phys. Status Solidi B. 249 (2) (2012) 335-342. https://doi.org/10.1002/pssb.201100634.

Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., Keeffe M. and Yaghi O. M. - Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage, Science. 295 (5554) (2002) 469. https://doi.org/10.1126/science.1067208.

Park K. S., Ni Z., Cote A. P., Choi J. Y., Huang R., Uribe-Romo F. J., Chae H. K., O'Keeffe M., Yaghi O. M. - Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. USA. 103(27) (2006)10186-10191. doi: 10.1073/pnas.0602439103.

Herzberg G. - Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966, (in English).

Hirota E. - Anharmonic potential function and equilibrium structure of methane, J. Mol. Spectrosc. 77 (2) (1979) 213-221. https://doi.org/https://doi.org/10.1016/0022-2852(79)90103-6.

Huber K. P. and Herzberg G. - Molecular Spectra and Molecular Structure : IV. Constants of Diatomic Molecules, Van Nostrand, New York, 1979, (in English).

Farrusseng D., Daniel C., Gaudillere C., Ravon U., Schuurman Y., Mirodatos C., Dubbeldam D., Frost H. and Snurr R. Q. - Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation, Langmuir. 25 (13) (2009) 7383-8. https://doi.org/10.1021/la900283t.

Zhao Z., Li Z. and Lin Y. S. - Adsorption and Diffusion of Carbon Dioxide on Metal−Organic Framework (MOF-5), Ind. Eng. Chem. Res. 48 (22) (2009) 10015-10020. https://doi.org/10.1021/ie900665f.

Millward A. R. and Yaghi O. M. - Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature, J. Am. Chem. Soc. 127 (51) (2005) 17998-17999. https://doi.org/10.1021/ja0570032.

Rappe A. K., Casewit C. J., Colwell K. S., Goddard W. A. and Skiff W. M. - UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (25) (1992) 10024-10035. https://doi.org/10.1021/ja00051a040.

Zhao Z., Li Z. and Lin Y. S. - Adsorption and Diffusion of Carbon Dioxide on Metal−Organic Framework (MOF-5), Ind. Eng. Chem. Res. 48 (22) (2009) 10015-10020. https://doi.org/10.1021/ie900665f.

Downloads

Published

21-06-2022

How to Cite

[1]
H. Thi Thao, P. . Thi Lan, N. . Dinh Thoai, T. Thanh Hue, N. Ngoc Ha, and N. T. T. Ha, “Understanding the adsorptive interactions of carbon dioxide with metal-organic framework (IRMOF-1) using a theoretical approach”, Vietnam J. Sci. Technol., vol. 60, no. 3, pp. 447–457, Jun. 2022.

Issue

Section

Materials

Most read articles by the same author(s)