Bioconversion of lignocellulosic materials by fungal “enzyme cocktail” with the contribution of a glycoside hydrolase from Xylaria polymorpha to release carbohydrates and biomethanol

Do Huu Nghi, Tran Thi Nhu Hang, Dang Nhu Quynh, Nguyen Manh Cuong
Author affiliations

Authors

  • Do Huu Nghi Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (INPC-VAST), 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Tran Thi Nhu Hang Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (INPC-VAST), 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Dang Nhu Quynh Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (INPC-VAST), 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Manh Cuong Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (INPC-VAST), 18 Hoang Quoc Viet, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/59/6/15482

Keywords:

Glycoside hydrolase, enzyme cocktail, ascomycetous fungus, Xylaria polymorpha, lignocelluloses

Abstract

Abstract. The multifunctional GH78 glycoside hydrolase from the soft rot ascomycete Xylaria polymorpha (XpoGH78) catalyzed the conversion of different lignocellulosic materials to release carbohydrates and biomethanol. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and a phenol oxidase. Thus, the conversion of rape straw meal by XpoGH78 could be optimized in the presence of accessory enzymes i.e. cellulases, xylanases and/or laccase. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g. arabinose, galactose, glucose, mannose, xylose) per gram substrate after incubating for 72 hrs. In addition, the treatment of rape straw with XpoGH78 led to a marginal biomethanol release of approx. 17 µg g-1 and improved to 270 µg g-1 by the cooperation with above accessory enzymes.

Downloads

Download data is not yet available.

References

Pérez J., Muñoz-Dorado, J., de la Rubia, T., and Martínez, J. - Biodegradation and biological treatments of cellulose, hemicellulose and lignin, Int. Microbiol. 5 (2002) 53-63. DOI: https://doi.org/10.1007/s10123-002-0062-3

Zhang Y. H., Ding S. Y., Mielenz J. R., Cui J. B., Elander R. T., Laser M., Himmel M. E., McMillan J. R., and Lynd L. R. - Fractionating recalcitrant lignocellulose at modest reaction conditions, Biotechnol. Bioeng. 97 (2007) 214-223. DOI: https://doi.org/10.1002/bit.21386

Kamm B. and Kamm M. - Principles of biorefineries, Appl. Microbiol. Biotechnol. 64 (2004) 137-145. DOI: https://doi.org/10.1007/s00253-003-1537-7

Mapemba L. D., Epplin F. M., Taliaferro C. M., and Huhnke R. L. - Biorefinery feedstock production on conservation reserve program land, Rev. Agric. Econ. 29 (2007) 227-246. DOI: https://doi.org/10.1111/j.1467-9353.2007.00340.x

Busch R., Hirth T., Liese A., Nordhoff S., Puls J., Pulz O., Sell D., Syldatk C., and Ulber R. - The utilization of renewable resources in German industrial production, Biotechnol. J. 1 (2006) 770-776. DOI: https://doi.org/10.1002/biot.200600057

Monties B. and Fukushima Y. - Occurence, function and biosynthesis of lignins in Biopolymers, Wiley.VCH. Weinheim. (2001) 1-64. DOI: https://doi.org/10.1002/3527600035.bpol1001

Lilholt H. and Lawther J. M. - Natural organic fibres in Comprehensive composite materials, Elsevier Science. (2000) 303-325. DOI: https://doi.org/10.1016/B0-08-042993-9/00048-6

Jeya M., Kalyani D., Dhiman S. S., Kim H., Woo S., Kim D., and Lee J.-K. - Saccharification of woody biomass using glycoside hydrolases from Stereum hirsutum, Bioresour. Technol. 117 (2012) 310-316. DOI: https://doi.org/10.1016/j.biortech.2012.03.047

Hatakka A., Biodegradation of lignin in Biopolymers, Lignin, humic substances and coal, Wiley-VCH.Weinheim. (2001) 129-180. DOI: https://doi.org/10.1002/3527600035.bpol1005

Hofrichter M. - lignin conversion by manganese peroxidase (MnP), Enzyme Microb. Technol. 30 (2002) 454-466. DOI: https://doi.org/10.1016/S0141-0229(01)00528-2

Mayer A. M. and Staples, R. C. - Laccase: new functions for an old enzyme, Phytochem. 60, (2002) 551-565. DOI: https://doi.org/10.1016/S0031-9422(02)00171-1

Sipos B., Benko Z., Dienes D., Reczey K., Viikari L., and Siika-aho M. - Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources, Appl. Biochem. Biotechnol. 161 (2010) 347-364. DOI: https://doi.org/10.1007/s12010-009-8824-4

Sorensen H. R., Pedersen S., and Meyer A. S. - Synergistic enzymemechanisms and effects of sequential enzyme additions on degradation of water insoluble wheat arabinoxylan, Enzyme Microb. Technol. 40 (2007) 908-918. DOI: https://doi.org/10.1016/j.enzmictec.2006.07.026

Nghi D. H., Bittner B., Kellner H., Jehmlich N., Ullrich R., Pecyna M. J., Nousiainen P., Sipilä J., Huong L. M., Hofrichter M., and Liers C. - The wood-rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits α-L-rhamnosidase and feruloyl esterase activity and releases hydroxycinnamic acids from lignocelluloses, Appl. Environ. Microbiol. 78 (2012) 4893-4901. DOI: https://doi.org/10.1128/AEM.07588-11

Faulds C. B. and Williamson G. - Purification and characterization of a ferulic acid esterase (FAE-111) from Aspergillus niger: specificity for the phenolic moiety and binding to microcrystalline cellulose, Microbiol. 140 (1994) 779-787. DOI: https://doi.org/10.1099/00221287-140-4-779

Eggert C., Temp U., and Eriksson K. E. - The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase, Appl. Environ. Microbiol. 62 (1996) 1151-1158. DOI: https://doi.org/10.1128/aem.62.4.1151-1158.1996

Liers C., Ullrich R., Pecyna M., Schlosser D., and Hofrichter M. - Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha, Enzym. Microb. Technol. 41 (2007) 785-793. DOI: https://doi.org/10.1016/j.enzmictec.2007.07.002

Li H., Zhan H., Fu S., Liu M., and Chai X. S. - Rapid determination of methanol in black liquors by full evaporation headspace gas chromatography, J. Chromatogr A. 1175 (2007) 133-136. DOI: https://doi.org/10.1016/j.chroma.2007.10.040

Topakas E., Vafiadi C., and Christakopoulos P. - Microbial production, characterization and applications of feruloyl esterases, Pro. Biochem. 42 (2007) 497-509. DOI: https://doi.org/10.1016/j.procbio.2007.01.007

Topakas E., Christakopoulos P., and Faulds C. B. - Comparison of mesophilic and thermophilic feruloyl esterases: Characterization of their substrate specificity for methyl phenylalkanoates, J. Biotechnol. 115 (2005) 355-366. DOI: https://doi.org/10.1016/j.jbiotec.2004.10.001

Abokitse K., Wu M., Bergeron H., Grosse S., and Lau P. C. - Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran, Appl. Microbiol. Biotechnol. 87 (2010) 195-203. DOI: https://doi.org/10.1007/s00253-010-2441-6

Beaugrand J., Chambat G., Wong V. W., Goubet F., Remond C., Paes G., Benamrouche S., Debeire P., O'Donohue M., and Chabbert B. - Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans, Carbohydr. Res., 339 (2004) 2529-2540. DOI: https://doi.org/10.1016/j.carres.2004.08.012

Downloads

Published

29-12-2021

How to Cite

[1]
D. H. Nghi, T. T. N. Hang, D. N. Quynh, and N. M. Cuong, “Bioconversion of lignocellulosic materials by fungal ‘enzyme cocktail’ with the contribution of a glycoside hydrolase from <i>Xylaria polymorpha</i> to release carbohydrates and biomethanol”, Vietnam J. Sci. Technol., vol. 59, no. 6, pp. 714–723, Dec. 2021.

Issue

Section

Natural Products

Most read articles by the same author(s)

<< < 1 2