On adaptive filtering for high dimensional systems under parameter uncertainty and its application to satellite data assimilation in oceanography
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/13/2/7987Abstract
In this paper, the adaptive filtering theory, recently proposed and developed the authors of present work [1-9] for stochastic, encountered in the field of data as simulation in meteorology and oceanography, is reviewed. Several important questions on numerical estimation og the gain matrix, model reduction, structural choices for the gain, filter stability… are discussed. We show the connections of present approach with a standard Kalman filtering. Adaptive filter is implemented along with a Kalman filtering. Adaptive filter is implemented along with a Kalman filter and standard Newton relation method on the four-layer adiabatic Miami Isopycnical Co-ordinate Ocean Model (MICOM) to produce the estimate for the deep oceanic circulation using assimilate synthetic observations of surface height. Numerical results justify high efficiency of the adaptive filter whose performance is slightly better than that of a Kalman filter due to impossibility to correctly specify the error statistics in a Kalman filter.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.