Some computational problems related to normal forms
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/13/1/7983Abstract
In the relational database theory the most desirable normal form is the Boyce-Codd normal form (BCNF). This paper investigates some computational problems concerning BCNF relation scheme and BCNF relations. We give an effective algorithm finding a BCNF relation r such that r represents a given BCNF relation scheme s (i.e., Kr=Ks, where Kr and Ks are sets of all minimal keys of r and s). This paper also gives an effective algorithm which from a given BCNF relation finds a BCNF relation scheme such that Kr=Ks. Based on these algorithms we prove that the time complexity of the problem that finds a BCNF relation r representing a given BCNF relation scheme s is exponential in the size of s and conversely, the complexity of finding a BCNF relation scheme s from a given BCNF relation r such that r represents s also is exponential in the number of attributes.We give a new characterization of the relations and the relation scheme that are uniquely determined by their minimal keys. It is known that these relations and the relation schemes are in the BCNF class. From this characterization we give a polynomial time algorithm deciding whether an arbitrary relation is uniquely determined by its set of all minimal keys. In the rest if this paper some new bounds of the size of minimal Armstrong relations for BCNF relation scheme are given. We show that given a Sperner system K and BCNF relation scheme s a set of minimal keys of which is K, the number of antikeys (maximal nonkeys) of K is polynomial in the number of attributes iff so is the size of minimal Armstrong relation of s.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.