Review paper: An overview and the time-optimal cruising trajectory planning
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/30/4/5767Keywords:
Robot motion planning, path planning, trajectory planning, parametric method, path length, time-optimal, cruising motions, translation of tool-center points, orientation changes of tools, PTP motions, free pathsAbstract
In the practical application of robots, the part processing time has a key role. The part processing time is an idea borrowed from manufacturing technology. Industrial robots usually are made to cover a very wide field of applications. So, their abilities, for example, in providing high speeds are outstanding. In most of the applications the very high speed applications are not used. The reasons are: technological (physical), organizational, etc., even psychological. Nevertheless, it is reasonable to know the robot's abilities. In this paper, a method which intends to provide the motion in every point of the path with possible maximum velocity is described. In fact, the path is divided to transient and cruising parts and the maximum velocities are required only for the latter. The given motion is called ``Time-optimal cruising motion''. Using the parametric method of motion planning, the equations for determining the motions are given. Not only the translation motions of tool-center points, but also the orientation motions of tools are discussed. The time-optimal cruising motion planning is also possible for free paths (PTP motions). A general approach to this problem is proposed too.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.