The minimum total heating lander
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/31/4/4317Keywords:
Maximum principle, control, the overload, total heat, minimum.Abstract
The article will research a lander flying into the atmosphere with flow velocity constraint, i.e. the total load by means of minimizing the total thermal energy at the end of the landing process. The lander’s distance at the last moment depends on the variables selected from the total thermal energy minima. To deal with the problem, the Pontryagin maximum principle and scheme Dubovitskij Milutin will be applied. Boundary value problems are solved by the introduction and continuation of the perturbation parameters and solutions for the selected parameter. The results of simulations are performed on Matlab.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.