Hierarchy supervised SOM neural network applied for classification problem
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/30/3/4080Keywords:
Self-organizing map, supervised learning, clustering, classification, Kohonen, neural networkAbstract
In this paper, supervised SOM neural network was suggested, with S-SOM and S-SOM+ applied for classification problems. These networks were developed from supervised and unsupervised SOM model by Kohonen and other researchers. Hierarchy supervised SOM models were developed from the S-SOM and S-SOM+, called HS-SOM and HS-SOM+. Our improvement was inspired by the idea of finding neurons that wrongly classify samples, which created extra training branches for the representative samples of these neurons. Experiments on 11 single-label classification datasets were executed. The results showed that the suggested model classified samples with high accuracy, from 92% to 100%.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.