Extract speech feature vectors for HMM-based Vietnamese speech synthesis system
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/29/1/2303Keywords:
Vietnamese speech synthesis, context-dependent, speech parameterization, statistical parametric speech synthesis.Abstract
Recently, the statistical framework based on Hidden Markov Models (HMMs) plays an important role in the speech synthesis method. The system can be built without requiring a very large speech corpus for training the system. In this method, statistical modeling is applied to learn distributions of context-dependent acoustic vectors extracted from speech signals, each vector contains a suitable parametric representation of one speech frame and Vietnamese phonetic rules to synthesize the speech. The overall performance of the systems is often limited by the accuracy of the underlying speech parameterization and reconstruction method. The method proposed in this paper allows accurate MFCC, F0 and tone extraction and high-quality reconstruction of speech signals assuming Mel Log Spectral Approximation filter. Its suitability for high-quality HMM-based speech synthesis is shown through evaluations subjectively.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.