HUMAN GAIT ANALYSIS USING HYBRID CONVOLUTIONAL NEURAL NETWORKS
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/18067Keywords:
Human gait analysis, Wearable IoT devices, Time-series analysis, Deep learning, PCA, CNN, HuGaDB.Abstract
Human gait analysis is a promising method of researching on human activities like walking or sitting. It reflects the habits of one person and can be observed in any activity that person performs. The patterns in human movements are influenced by many factors, including physiology, social, psychological, and health factors. Differences in limb movements help identify gait patterns, which are often measured using inertial measurement unit sensors (IMU) like gyroscopes and accelerometers placed in various locations throughout the body. This paper analyses the combination of IMU sensors and electromyography sensors (EMG) to improve the identification accuracy of human movements. We propose the hybrid convolutional neural network (CNN) and long short-term memory neuron network (LSTM) for the human gait analysis problem to achieve an accuracy of 0.9418, better than other models including pure CNN models. By using CNN's image classification advancements, we analyse multivariate time series sensor signals by using a sliding window to transform sensor data into image representation and principal component analysis (PCA) to reduce the data dimensionality. To tackle the dataset imbalance issue, we re-weight our model loss by the inverse effective number of samples in each class. We use the human gait HuGaDB dataset with unique characteristics, for gait analysis.Metrics
Metrics Loading ...
References
We have uploaded the references in bib file format of latex project
Downloads
Published
12-06-2023
How to Cite
[1]
K. Nguyen, V. V. Nguyen, N. T. Mai, A. H. Nguyen, and A. V. Nguyen, “ HUMAN GAIT ANALYSIS USING HYBRID CONVOLUTIONAL NEURAL NETWORKS”, JCC, vol. 39, no. 2, p. 125–142, Jun. 2023.
Issue
Section
Articles
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.